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Review of Asymmetric Confidence Intervals and Evaluation of 
“WesVar” Software for Analysis of Data from NHANES Complex 

Surveys 
 

Dr. Hans D. Allender, U.S. EPA 
 
Introduction 
 
Within the continuous expansion of statistical capabilities at USEPA Office of Pesticide 
Programs (OPP) and through the introduction to the “National Health and Nutrition 
Examination Survey” (NHANES) database and results, the NHANES team has been 
exposed to complex survey designs.  Many questions related to statistical procedures that 
apply to those complex bias designs have been presented.  At the crux of the matter is the 
need for the NHANES to make sure that certain subgroups in the population are properly 
represented in the survey.  To assure proper representation it is necessary to over sample 
these subgroups. The result of over-sampling implies that samples are not purely 
collected at random and in order to compensate for the bias introduced by the sample 
design it is required to balance the survey.  The balance is reached by given a 
representative weight to each element in the sample.  Through a complex mathematical 
procedure involving the Jackknife design option, NHANES estimates the proportion of 
subjects, and weights are assigned to each subject. In the process fifty-two replicates are 
created.  
 
A normal practice to calculate point estimates and its confidence intervals from survey 
data is to use large-sample normal approximations. In these cases, for example, a 95% 
confidence intervals on a point estimated of, say, a given percentiles are often computed 
by adding and subtracting from the point estimate a quantity equal to twice its standard 
error. This normal approximation method may not be adequate, when estimating the 
proportion of subjects above or below a selected value (especially when the proportion is 
near 0.0 or 1.0 or when the effective sample size is small).  In addition, confidence 
intervals on proportions deviating from 0.5 are not theoretically expected to be symmetric 
around the point estimate. Also, adding and subtracting a multiple of the standard error to 
an estimate near 0.0 or 1.0 can lead to impossible confidence limits (i.e., proportion 
estimates below 0.0 or above 1.0). 
 
On the “Second National Report on Human Exposure to Environmental Chemicals” 
published by the Department of Health and Human Services, Center for Disease Control 
and Prevention there are a series of tables describing the Geometric mean and selected 
Percentiles of concentrations in urine on a variety of the compound surveyed by 
NHANES.  A characteristic of these point estimates is a 95% confidence interval 
associated with each estimate.  A closer look at these confidence intervals shows that 
they are not symmetric; they are not calculated by classical statistical methods.   A brief 
reference in the publication describes a cumbersome procedure to obtain these intervals. 
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Objectives 
 
The main goal of this effort is to find an alternative way to calculate the asymmetric 95% 
confidence intervals presented in the “Second National Report on Human Exposure to 
Environmental Chemicals”. Also, to develop capabilities to operate non-classical 
statistical methods; especially methods of replication, this is, the creation of a great 
amount of sub-samples from the whole sample that will produce replicate estimates.  In 
developing these capabilities the software WesVar version 4.2 was used and evaluated. 
 
Methodology 
 
Non-classical Statistical methodologies have developed because of the advances of 
computers that allow the “brute-force-approach” of advance processors to generate a 
great amount of sub-samples from the original one; and through special algorithms 
calculate different parameters. Because the increased precision of these methodologies, 
confidence intervals that with classical statistics were calculated by adding and 
subtracting a fix amount (x times the standard error), and so rendered symmetric, are now 
computer generated resulting in asymmetric intervals.  
 
The typical distributions presented in NHANES’ concentration of pesticides in urine are 
well skew to the right and as a reflection of this fact asymmetric confidence intervals 
calculated with non-classical statistics will also have the tendency to be skew to the right. 
In the “Second National Report on Human Exposure to Environmental Chemicals” tables 
for a series of compound’s concentration in urine are presented showing the Geometric 
Mean and selected percentiles (10th, 25th, 50th, 75th, 90th, 95th), all these point estimates 
are provided with asymmetric 95% confidence interval.  
 
To independently obtain results similar to the published tables, the analyst picked Table 
171, page 206 of the aforementioned report as a prototype. This table describes the 
concentration of 1-Naphthol; a metabolite of Carbaryl, hence, the two names will be used 
interchangeable. The Table is reproduced here as Table No. 1.  The complete report can 
be found at http://www.cdc.gov/exposurereport/   
 
The first step in the process is from the raw data to prepare the distribution of 
concentration of Carbaryl and to create the divisions in the data as they relate to the table 
we want to reproduce i.e.; Age group, Gender, and Race/ethnicity. This preparation was 
done with the help of the statistical package JMP 5.0.1 and using the latest database 
provided by NHANES 99+.  Once the data was arranged in a proper way, the second step 
was to convert these files to files compatible with the WesVar software. Corresponding 
formulas were introduced in WesVar to calculate the Geometric mean and selected 
percentiles. Also, replicates already developed by NHANES were used. In the calculation 
the variance estimation method used was Jackknife n (JKn), which is the design used 
when the number of Primary Sampling Units (PSUs) in a stratum is greater than or equal 
to two, as in the case of NHANES. 
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The results of each program run are listed on Table No. 2 to Table No. 10. Each table 
represents a line in the NHANES table 
 
Table No. 1.- Table 1-Naphthol (Carbaryl) from the Second National Report on 
Human Exposure to Environmental Chemicals  
 

 
 
 
Table No. 2 Total Carbaryl (URXCAR) 
 
STATISTIC  ESTIMATE STDERROR LOWER 95% UPPER 95%    N 
Geo   1.70  0.177   1.34   2.05   1998 
Q10   0.71 . . .      1998 
Q25   0.71 . . .     1998 
Q50   1.30  0.154   1.07   1.69  1998 
Q75   2.73  0.454   2.00   3.82  1998 
Q90   6.25  1.447    4.29  10.09   1998 
Q95  11.63  3.336    8.07  21.46  1998 
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Table No. 3 Carbaryl for Age 6 to 11 
 
STATISTIC ESTIMATE STDERROR LOWER 95% UPPER 95% N  
GeoA          1.41        0.148         1.11         1.71 483 
Q10A          0.71 . . .         483 
Q25A          0.71 . . .             483 
Q50A          1.11        0.219         0.71         1.59 483 
Q75A          2.26        0.405         1.50         3.13 483 
Q90A          3.61        0.604         3.10         5.53 483 
Q95A          5.53        1.600         4.46        10.88 483 
 
Table No. 4 Carbaryl for Age 12 to 19 
 
STATISTIC ESTIMATE STDERROR LOWER 95% UPPER 95% N 
GeoB          1.54        0.177         1.19         1.90 682 
Q10B          0.71 . . .             682 
Q25B          0.71 . . .             682 
Q50B          1.15        0.198         0.74         1.53 682 
Q75B          2.14        0.601         1.70         4.11 682 
Q90B          5.93        1.887         3.69        11.26 682 
Q95B          9.14        6.234         6.13        31.15 682 
 
 
Table No. 5 Carbaryl for Older than 20 
 
STATISTIC ESTIMATE STDERROR LOWER 95% UPPER 95% N 
 
GeoC          1.79        0.197         1.39         2.18  833 
Q10C          0.71 . . .             833 
Q25C          0.71 . . .             833 
Q50C          1.40        0.176         1.08         1.79  833 
Q75C          2.92        0.471         2.19         4.08  833 
Q90C          6.78        2.176         4.50        13.23  833 
Q95C         13.41        3.972         8.45        24.39  833 
 
Table No. 6 Gender: Males 
 
STATISTIC ESTIMATE STDERROR LOWER 95% UPPER 95% N 
GeoM          1.73        0.172         1.38         2.07 974 
Q10M          0.71 . . .             974 
Q25M          0.71 . . .             974 
Q50M          1.38        0.175         1.09         1.79 974 
Q75M          2.85        0.507         2.06         4.09 974 
Q90M          6.53        1.246         4.70         9.70 974 
Q95M         10.41        2.362         8.16        17.64 974 
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Table No. 7 Gender: Females 
 
STATISTIC ESTIMATE STDERROR LOWER 95% UPPER 95% N 
GeoF          1.67        0.191         1.29         2.05 1024 
Q10F          0.71 . . .           1024 
Q25F          0.71 . . .            1024 
Q50F                1.27        0.227         0.78         1.69 1024 
Q75F          2.62        0.480         1.90         3.82 1024 
Q90F          6.17        2.395         3.93        13.54 1024 
Q95F         13.35        5.534         7.63        29.84 1024 
 
 
Table No. 8 Mexican Americans 
 
STATISTIC ESTIMATE STDERROR LOWER 95% UPPER 95% N 
GeoMex     1.48           0.163 1.15               1.81  697 
Q10Mex     0.71         697 
Q25Mex     0.71    . . .              697 
Q50Mex     1.13         0.252         0.71          1.72  697 
Q75Mex     2.27         0.374         1.79                  3.29  697 
Q90Mex     4.34         1.112         3.11                   7.58  697 
Q95Mex     7.86           2.180         5.62                14.37  697 
 
 
Table No. 9 Blacks 
 
STATISTIC ESTIMATE STDERROR LOWER 95% UPPER 95%    N 
GeoBla      1.81        0.215         1.38         2.24    508 
Q10Bla      0.71 . . .                 508 
Q25Bla      0.71 . . .               508 
Q50Bla      1.39        0.186         1.04         1.78     508 
Q75Bla      2.98        0.705         2.06         4.89     508 
Q90Bla      7.18        3.154         4.69        17.35     508 
Q95Bla    12.96       10.771         8.78        52.01     508 
 
 
Table No. 10 Whites 
       
STATISTIC ESTIMATE STDERROR LOWER 95% UPPER 95%       N 
GeoW          1.70        0.212         1.28         2.13       587 
Q10W          0.71 . . .                  587 
Q25W          0.71 . . .                   587 
Q50W          1.31        0.183         1.06         1.79       587 
Q75W          2.74        0.533         1.90         4.04       587 
Q90W          6.20        2.087         4.03        12.40       587 
Q95W         11.42        4.606         6.59        25.08       587 
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Result Analysis 
 
As expected, when comparing the results of WesVar with the NHANES table the results 
are not exactly the same, however, they are remarkably closed and in many cases the 
same. For example, the value of the total distribution of Carbaryl calculated by NHANES 
for the Geometric mean is 1.70 and its 95% confidence interval is 1.38 to 2.09; the 
WesVar estimated is 1.70 and its 95% confidence interval 1.34 to 2.05.  In this case, 
WesVar produces the same point estimated for the Geometric mean and moves the 
interval a bit to the left keeping the same proportion.  Because of increase in the 
distribution’s instability at the extremes, more acute differences could be expected in the 
very extreme estimates i.e.; the 95th percentile; the NHANES estimated is 12.0 with 95% 
CI 7.20 to 19.0 while the WesVar estimated is 11.63 with 95% CI 8.07 to 21.46. Observe 
that in this case WesVar produces point estimated very close to the NHANES’ and   
shifts the interval a bit to the right.  
 
The other point estimates of NHANES are very close to the point estimates by WesVar, 
as well as the confidence interval. A small discrepancy in the sample size for Blacks and 
Whites is observed in the WesVar results, this is because the latest database used by the 
analyst has some corrections that include migration of individuals to the “Other Races” 
group. However, point estimates on these groups are about the same.  
 
Summary 
 
The duplication of the Carbaryl values on Table No.1 shows that WesVar has excellent 
capabilities and through a much simple procedure than the one used by NHANES very 
reliable estimates and confidence intervals can be obtained.  
 
Evaluation of the “WesVar” software showed several special features including 

• Easy-to-use Window interface 
• Data management and flexibility to use popular statistical formats files 

(SAS transport, ASCII, Excel, Access, etc.) 
• Capabilities for weight creation when not provided by the original survey 
• Several replication methods (JK1, JK2, JKn BRR, Fay, etc)  
• Results in form of tables with means, totals, percentages, standardized 

rates, different tests, etc.   
• Regression for lineal, dichotomous and multinomial logistic models 
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Cost Effective “Collaborative Sampling” in Visual Sample Plan (VSP) 
Software to Estimate Means and Test Hypotheses 

 
Richard O. Gilbert, Brent A. Pulsipher and John E. Wilson 

Pacific Northwest National Laboratory 
Richland, Washington 

 
Selecting a cost-efficient sampling design for determining the right type, number 
and location of environmental samples is a critically important component of any 
environmental study.   This paper presents an innovative design called 
Collaborative Sampling (CS) that can be more cost-effective in some situations 
than simple random sampling.  The CS design uses two measurement methods: a 
field-based relatively inexpensive measurement method, and the standard 
laboratory “expensive” method.  The idea behind CS is to replace the need for 
obtaining so many expensive measurements with collecting a larger number of 
the less expensive measurements.  The CS design is currently being added to the 
suite of designs in the Visual Sample Plan (VSP) software, which can be 
downloaded free at http://dqo.pnl.gov/vsp.  This paper discusses the CS 
methodology, assumptions and VSP implementation of the CS design.   
 

1.0  Introduction 
 
The importance of selecting a sampling design for obtaining representative environmental 
data for decision making cannot be disputed.  The application, benefits, and limitations of 
several basic and innovative sampling designs are discussed in EPA (2002).   The 
Collaborative Sampling (CS) design, which is not discussed in EPA (2002), can be more 
cost effective in some situations than simple random sampling for estimating the mean 
and testing hypotheses about the mean.  Although CS may be new to many 
environmental professionals, discussions of the CS design can be found in, e.g., Gilbert 
(1987) under the title of “Double Sampling.”  
 
The CS design uses two measurement methods: the “standard analysis” (sometimes 
called the laboratory analysis or “the expensive method”) and a less expensive and 
possibly less accurate measurement method (sometimes called the field-based analysis or 
“the inexpensive method”).  The idea behind CS is to replace the need for obtaining so 
many expensive measurements with collecting a larger number of the less expensive 
measurements.  The inexpensive method is used at n’ locations and the expensive method 
is used at n of those n’ locations, where n’ is typically much larger than n.   
 
The CS design is currently being implemented in the Visual Sample Plan (VSP) software 
tool for use when the sampling objective is to estimate a mean, compute an upper 
confidence limit on the mean, or test whether the mean exceeds an upper threshold value.  
VSP is map-based, user-friendly visual tool that helps the user determine the number and 
location of samples needed to ensure confident decisions.  It is focused primarily on 
sampling design but some modules, including the CS module, incorporate statistical 
analysis routines for analyzing the data once it has been gathered.   
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2.0 Estimating the Mean  
 
Suppose the objective of sampling is to estimate the mean of a contaminant in surface 
soil over a defined geographical region.   One design that might be considered is simple 
random sampling (or perhaps systematic grid sampling) to select sampling locations, and 
then use the standard (“expensive”) laboratory analysis method on the collected samples.   
Should the CS design be used instead?  As discussed in Gilbert (1987, Chapter 9), the 
following conditions must hold for CS to be more cost effective than using the entire 
measurement budget to obtain expensive measurements on samples collected using a 
simple random sampling design:  

• There is an underlying linear regression relationship between the two types of 
measurements 

• There is a sufficiently high correlation, ρ, between the two types of measurements 
made at the same locations 

• The ratio R C Cex inex= /  is sufficiently large, where Cex is the cost of a single 
expensive measurement and Cinex is the cost of a single inexpensive measurement. 

When the objective is to estimate the mean, CS will be more cost efficient than simple 
random sampling if the following inequality holds (Gilbert 1987, equation 9.5): 
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In practice, the value of ρ will be uncertain and should be estimated using a “pilot” study 
in which the proposed inexpensive and expensive measurement methods are used in 
realistic field and laboratory conditions for, say 20 or more locations.   Also, these pilot 
study data should be plotted in a regression scatter plot to assess the linearity assumption.  
 
If CS is cost effective, then equations in Gilbert (1987, page 109) can be used to compute 
the number of samples, n’ and n, needed.  Gilbert provides equations for two cases:   

• Minimize the variance of the estimated mean for a given fixed measurement 
budget 

• Minimize the total measurement cost subject to the constraint that the variance of 
the estimated mean is no greater than the variance of the mean that would be 
obtained based on n expensive measurements obtained using a simple random 
sample design.    

 
The above methodology (testing for cost efficiency and computing n’ and n when the 
sampling objective is to estimate the mean) can be easily accomplished using the VSP 
software code.  After booting up VSP, simply click on Sampling Goals > Estimate the 
Mean > Data Not Required to be Normally Distributed > Collaborative Sampling > 
Simple Random Sampling or Systematic Grid Sampling to access the dialog box for 
inputting the required Data Quality Objectives (DQOs). 
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3.0 Confidence Limits on the Mean 

 
Suppose the sampling objective is to estimate the mean and also compute a one-sided 
upper or lower confidence limit or a two-sided confidence interval on the mean.  In 
additional to providing an interval within which there is confidence the true mean lies, an 
upper confidence limit on the mean is sometimes used to test if the mean exceeds a 
threshold value.  A method for computing the required n’ and n samples when the 
objective is to compute confidence limits has recently been developed by the authors and 
is currently being incorporated into VSP.  The VSP user gains access to this method in 
VSP by clicking Sampling Goals > Construct Confidence Interval on the Mean > 
Can Assume Data will be Normally Distributed > Collaborative Sampling > Simple 
Random Sampling or Systematic Grid Sampling.   
 
This CS module works very similarly to the CS VSP module discussed in Section 2.0 
above.  First, the VSP user inputs the following DQOs into the VSP dialog box (the 
desired width of the confidence interval, the desired confidence level, the expected total 
standard deviation of the data set of expensive measurements, the expected correlation ρ 
between the inexpensive and expensive measurements, and costs Cex and Cinex ).  Then 
VSP determines if CS is cost effective using Equation 1.0 above.   

 
If CS is cost effective, then VSP computes n’ and n such that the total measurement cost, 
C, is minimized subject to the constraint that the width of the confidence interval (CI) 
will be no greater than a CI width that would be obtained using nv samples obtained using 
simple random sampling and measured using only the expensive measurement method.  
This value of nv is computed using an iterative procedure (Gilbert 1987, page 30).   Then 
n’ and n are computed using nv and Equations 9.8, 9.9 and 9.10 in Gilbert (1987, page 
109). 
 
After the n’ and n measurements have been obtained, the VSP user can enter them into 
VSP.  Then VSP computes: 

• the mean, ycs , and it’s standard deviation, sycs
, using Equations 9.1 and 9.2, 

respectively, in Gilbert (1987, page 107) 
• the confidence interval on the mean assuming the data are normally distributed or 

that n’ and n are large enough such that the estimated mean is normally 
distributed 

• the estimated correlation coefficient, $ρ , between the two types of measurements, 
and the estimated standard deviation of the expensive measurements.  

 
The correlation and standard deviation are computed so that the VSP user can evaluate if 
the value of those parameters that were entered into the VSP DQO dialog box are valid.  
If not, the new values can be entered into VSP to obtain revised values of n’ and n.  VSP 
also produces a regression plot of the inexpensive and expensive measurements so the 
user can graphically evaluate the linear regression assumption.   Also, VSP provides a 
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warning to the user that the computed confidence interval may be too short if n’ and n 
are very small. 
 
If CS is not cost effective, then VSP assumes simple random sampling and only the 
expensive measurement method will be used.  VSP computes the required number of 
samples, n, using the iterative procedure in Gilbert (1987, page 30).  Once the n 
expensive measurements are entered into VSP, then VSP computes the confidence 
interval assuming the data are normally distributed, i.e., by using the t distribution with 
n-1 degrees of freedom. 
 

4.0 Test if the Mean Exceeds a Fixed Threshold Value 
 
Suppose the sampling objective is to estimate the mean and conduct a one-sample test of 
the null hypothesis that the mean exceeds a fixed threshold value.  The methodology for 
computing n’ and n needed for the test has recently been developed by the authors and is 
currently being coded into VSP.  The VSP user will access the dialog box for this 
methodology by clicking Sampling Goals > Compare Average to Fixed Threshold > 
Can Assume Data will be Normally Distributed > Collaborative Sampling > Simple 
Random Sampling or Systematic Grid Sampling.   
 
First, the VSP user inputs the following data quality objective into the VSP dialog box: 
the null hypothesis of interest (“true mean ≥ threshold value,” or “true mean ≤ threshold 
value,”  the tolerable probability, α, that the test will falsely reject the null hypothesis, the 
tolerable probability, β, that the test will falsely accept the null hypothesis, the width of 
the gray region, ∆, in the Decision Performance Goal Diagram, the expected total 
standard deviation of the set of expensive measurements, σ total ex, , the expected 
correlation, ρ, between the inexpensive and expensive measurements, and the  
measurements costs Cex  and Cinex .    
 
Then VSP uses Equation 1 above to determine if CS is cost effective relative to simple 
random sampling.   
 
If CS is cost effective, then VSP computes n’ and n using the following equations, which  
were derived by the authors using the method of proof used in Appendix A in EPA 
(2000b) 
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After the n’ inexpensive and n expensive measurements are obtained and entered into 
VSP, then VSP computes 
 

• The mean, ycs , and it’s variance, sycx

2 , using Equations 9.1 and 9.2, respectively, 
in Gilbert (1987, page 107) 

• The correlation coefficient between the two types of measurements and the 
standard deviation of the expensive measurement, and  

• A one-sample Z test of the null hypothesis 
 

If the VSP user selected the null hypothesis to be “true mean exceeds the fixed threshold 
value,” then the Z test is conducted by computing 
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and rejecting the null hypothesis if  Z z≤ − −1 α  , where z1−α  is the (1-α)th percentile of the 
standard normal distribution.  The Z test is used instead of the t test because the most 
appropriate method for determining the degrees of freedom for the t test for the CS 
design has not yet been determined.   

 
VSP also constructs a regression plot of the two types of measurements, and if both n’ 
and n are small, warns the user that the test result may not be reliable.  Finally, VSP 
automatically reduces the value of ρ entered in the dialog box by 0.10 units (say from 
0.80 specified in the dialog box down to 0.70) and re-computes n’ and n.     This permits 
the VSP user to see how n’ and n change if the original value of ρ was too large by 0.10.  
VSP also conducts a sensitivity analysis to determine how n’ and n are affected by 
changing the DQO input parameters.  This sensitivity analysis is provided in the 
automatically-generated design report.  This report may be inserted in a Quality 
Assurance Project Plan or similar project documents. 
 
If CS is not cost effective, then VSP computes the number of expensive measurements, n,   
needed to test the null hypothesis using the following equation (derived in Appendix A of 
EPA 2000b), which is suitable if simple random sampling is used: 
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After the n expensive measurements are obtained, VSP computes the mean and its 
standard deviation using standard statistical formulas appropriate for simple random 
sampling (not CS).  Finally, VSP performs a one-sample Z test and reports whether the 
null hypothesis can be rejected at the α-significance level.  
 
An example of some VSP output when CS is cost efficient is shown in Figure 1.0, which 
shows the VSP dialog box and DQO inputs, the resulting number of samples (n’ and n) 
computed by VSP, and the sampling locations placed on the map of the site. 
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Figure 1.  Example VSP Dialog Box and Map for Hypothesis Testing 
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Determining Detection Limits for Environmental Analyses 
 

Thomas Georgian, U.S. Army Corps of Engineers 
 

A simple cost-effective approach is proposed for estimating detection limits in lieu of the 
method detection limit (MDL) procedure in 40 CFR Part 136 Appendix B.  Unlike the 
MDL procedure, the approach is protective against false positives (e.g., since it takes 
long-term variability into account), addresses false negatives, and takes analytical bias 
into account. 

 
 
Introduction: 
 
In March 2003, the U.S. Environmental Protection Agency (EPA) proposed revisions for 
the method detection limit (MDL) procedure in 40 CFR Part 136 Appendix B1.  Although 
the MDL procedure was established for determining the sensitivity of analytical test 
methods under EPA’s Clean Water Act (CWA), the procedure has become the de facto 
industry standard for determining detection capability for environmental test methods.  
EPA’s re-assessment of the existing MDL procedure and the proposed revisions that 
resulted from the evaluation were performed “pursuant to a settlement agreement with the 
Alliance of Automobile Manufacturers, et al.”  The lawsuit challenged the validity of the 
“the general procedures used to establish the method detection limit.”  Unfortunately, as 
stated by, the American Council of Independent Laboratories (ACIL), “The proposed 
approach is fundamentally an extension of the previous application and remains a poor 
method to determine a laboratory’s method sensitivity” 2.  Some salient problems with the 
existing as well as the proposed MDL procedure are discussed below: 
 
• The MDL underestimates long-term analytical variability.  Since the MDL is 

typically determined from a single analytical event (e.g., a set of replicates samples 
processed in the same batch and analyzed the same day), the MDL procedure does 
not take into account analytical variability that arises from different analysts, 
instrument calibrations, lots of reagents, and so forth.  For example, in a study by the 
ACIL that compared the variability of “long-term method blanks for method 200.7” 
and “method blanks prepared on the same day analyzed in a single batch,” it was 
observed that “The standard deviation of the long-term method blanks was typically 2 
to 4 times greater than the single batch method blanks…2” 

 
• The MDL is not a conservative statistical limit for the minimization of false positives.  

It protects against false positives (with 99% confidence), but only for the next single 
future measurement and does not protective against false positives for a large 
unspecified number of future measurements 3.  The MDL is typically determined 
from only seven replicate measurements, giving rise to a statistical estimate of the 
detection limit that can vary from one determination to the next (e.g., even over a 
short time period) by a factor of about two. 
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• The MDL does not address false negatives.  The proposed definition is as follows: 
“The method detection (MDL) is an estimate of the measured concentration at which 
there is 99% confidence that a given analyte is present in a given matrix” (which is 
not substantively different from the current definition: “…the minimum concentration 
of a substance that can be measured and reported with 99% confidence that the 
analyte concentration is greater than zero…”).  The MDL is primarily calculated 
using the formula 1, 4: 

 
stMDL np 1,1 −−=         (1) 

The factor t1 - p, n − 1 denotes the (1 − p) 100th percentile of the Student t distribution 
with n −1 degrees of freedom, where p = 0.01; s denotes the standard deviation for a 
set of n replicate measurements (where n ≥ 7).  Therefore, the MDL is essentially a 
“critical value” (i.e., a limit that minimizes false positives).  If an analyte were not 
present in a sample, the probability that a single future sample measurement would be 
less than the MDL would be about 99%.  Thus, if a measurement were greater than 
the MDL, the analyte would be reported as “detected” with at least 99% confidence.  
However, if a measurement were less than the MDL, the result could not be reported 
as “< MDL” with a high level of confidence.  If the analyte were present at a 
concentration near the MDL, for example, the result would be erroneously reported as 
“< MDL” (a false negative) about 50% of the time 3. 

 
• The MDL does not take analytical bias (positive or negative) into account because it 

is calculated on the basis of only analytical precision.  Neither upper nor lower 
acceptance limits are established for analytical bias.  For example, it is primarily 
assumed that the mean concentration of a blank is zero (e.g., the revised MDL 
procedure does not permit “a recovery – or blank-correction procedures” unless it is 
specified in the test method).  As a result, the procedure under estimates detection 
limits for test methods that possess positive bias at low-concentrations due to 
persistent blank contamination.  The MDL could be substantially smaller than the 
mean analyte concentration in method blanks 2,5. 

 
• The MDL procedure can be a relatively expensive to perform because of the number 

of replicates potentially required to determine the MDL for each analytical method 
and instrument.  For example, the proposed procedure states: “When developing an 
MDL for a new or revised method, or when developing a matrix-specific MDL, the 
MDL procedure must be iterated and the reasonableness of the MDL determined 
using an F-test…”  If the ratio of the variances for the two MDL determinations 
exceeds a specified critical value for the F-test, then yet another iteration of the MDL 
procedure must be performed until the critical value for the F-test is not exceeded.  
The approach increases the cost of the performing MDL studies by at least a factor of 
two. 

 
 
This primary objective of this article is to present an alternative procedure for calculating detection 
limits that overcomes most of the shortcomings of the both the current and proposed EPA MDL 
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procedures (e.g., the issues discussed above), while remaining relatively cost-effective for routine 
environmental production work.  The procedure is essentially a more complete treatment of 
detection limits presented in a prior publication 3.  Like the 40 CFR procedure, the approach uses 
a single-concentration-based design.  A calibration-based design would be expected to produce 
superior results, but would not be as cost effective for routine environmental testing (e.g., since 
more analyses would typically be required to establish detection capability). 
 
 
As in Currie’s approach, two "types" of detection limits (DLs) are proposed: A “critical 
value” or detection limit that minimizes Type I error (i.e., "false positives"), denoted as 
LC (using Currie’s notation) and a detection limit that minimizes Type II error ("false 
negatives"), denoted as LD

 8.  The “Type I detection limit,” LC, is essentially a reporting 
limit for "detections," and the “Type II detection limit,” LD, a reporting limit for "non-
detections."  A measured concentration, X, would be reported as “detected” (at the 99% 
level of confidence) if X > LC and all method-specified identification criteria were met 
(peak pattern recognition occurs for the Aroclor analyses by Method 8082, and all 
qualifier ions are present for volatile analyses by Method 8260B).  Otherwise, the result 
would be reported as a “non-detect.”  The limit LD defines the lowest reporting limit for 
non-detects.  Thus, if X < LC or method-specific identification criteria are not met, the 
result would be reported as “< LD” (or less than some threshold value greater than LD). 
 
 
Procedure: 
 
A detection limit study is performed as part of an “Initial Demonstration of Proficiency” 
(IDOP).  If blank contamination is not significant, the IDOP is essentially performed 
using the 40 CFR Part 136 procedure.  At least seven low-level laboratory control 
samples (e.g., method blanks spiked at a concentration from 2 to 10 times the estimated 
analytical detection limit) are processed through the entire test method (i.e., through all 
preparatory and determinative steps).  However, the seven replicates are analyzed in at 
least three separate analytical batches over three or more days to help take day-to-day 
sources of analytical variability into account.  The replicate low-level laboratory control 
samples (LCSs) are used to calculate the sample standard deviation, s.  For methods 
capable of reporting uncensored numerical results (e.g., ICP trace metal methods), LC 
may be calculated using at least seven method blanks.  However, since method blanks are 
routinely analyzed as batch quality control samples, a large number of method blanks 
(e.g., at least 30) is recommended to calculate s, since the ultimate objective is to produce 
an accurate estimate of the “true” (i.e., population) standard deviation, σ.  Additional 
LCSs (e.g., analyzed on a per batch basis) could also be used.  The sample statistic s 
becomes a better estimate of σ as the number of replicates n increases. 
 
 
If fewer than 20 or 30 data points are available (the typical scenario), the Type I detection 
limit is calculated using the formula 3: 
 

snzszL npUCLpC ]/)1[( 2
,111,1 γγ χ −−−− −==     (2) 
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where χ2

n - 1,γ is the γ100th percentile of the χ2 distribution and z1 − p denotes the (1 − 
p)100th percentile of the standard normal distribution.  (Note that, as in 40 CFR Part 136, 
normality is assumed.)  Equation 2 is the “(1 − γ)100% tolerance interval that contains at 
least the proportion 1 − p of the population.”  If a large number of analyses were 
performed using method blanks, then (1 – p)100% of the measurements would less than 
LC with (1 − γ) 100% confidence.  If p = 0.01 and γ = 0.05 (or 0.01), 99% percent of all 
future measurements will be less than LC with 95% (or 99%) confidence.  For p = 0.01, γ 
= 0.01, and n = 7, 
 

MDLssLC 211.6872.0/)17(33.2 ≈=−=     (2b) 

Equation (2b) may be used in lieu of Equation (2) and provides a conservative estimate of 
the Type I DL when n > 7.  (The Type I DL calculated from Equation 2 will be greater 
than or approximately equal to two times the MDL from Equation 1 when n > 7).  For a 
large number of replicates (e.g., n > 30), the formula in 40 CFR Part 136 may be used to 
calculate the Type I DL: 
 

stL npC 1,1 −−=         (3) 

However, it is recommended that Equation 2 be used even when n > 30 since Equation 
(3) tends to under estimate the Type I DL.  It is also recommended that a statistical test 
for normality as well as a test for outliers (e.g., the Grubbs test) be performed prior to 
calculating LC. 
 
The Type I DL is verified using a “detection limit check sample” or “false negative 
quality control sample” (FNQS) rather than using the iterative F-test procedure presented 
in 40 CFR Part 136.  The FNQS not only verifies LC, but also establishes LD (i.e., 
becomes the lowest possible reporting limit for non-detects).  The FNQS is prepared in 
the same manner as the environmental samples.  For example, for drinking water, the 
FNQS would be reagent water fortified with the analyte(s) of concern at about 2 – 3 times 
the calculated Type I DL and would be processed though the entire analytical method.  
However, note that when many analytes are being simultaneously analyzed, it may not be 
practical to prepare a spiking solution that is 2 to 3 times the calculated Type I DL for all 
the analytes.  Under these circumstances, the spiking concentration for the IDOP-DL 
study may be used for the Type II detection limit (FNQS) as long as it is 2 -10 times LC. 
 
 
The FNQS verifies the Type I DL.  “Detection” occurs if the measured concentration, X 
> LC and all method-specific identification criteria are met (e.g., peak pattern recognition 
for the PCB analyses).  Once the FNQS is analyzed, it may be necessary to analyze 
additional FNQS at higher or lower spiking concentrations.  If an analyte in the FNQS is 
not detected, then LC could have been under estimated or a low bias could be present.  
The concentration of the FNQS must be increased until the analyte can be consistently 
detected (e.g., in two consecutive FNQS).  If a significant negative bias were not present, 
then the calculated value of LC obtained from Equation 2 would be rejected and LC would 
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be estimated using the FNQS spiking concentration; LC would be set at one half the 
concentration of the FNQS.  However, if the non-detect for the FNQS were to arise from 
a large negative bias, then the calculated Type I DL would be retained, but LD would be 
established from the lowest FNQS concentration that produces a detect. 
 
If the response (i.e., signal to noise ratio) of the analyte in the FNQS is very high, then LC 
may be over estimated; the concentration of the FNQS may be too high.  The FNQS 
spiking concentration may be decreased to the smallest concentration that gives rise to 
detection.  If two consecutive FNQS produce detections, then LC may be reduced to one 
half the lowest FNQS concentration that gives rise to detection.  Note that reducing the 
FNQS to obtain a lower value of LC or LD would be optional.  However, if analytical bias 
is not a significant factor and the FNQS is greater than three times the calculated Type I 
DL, one half the concentration of the lowest FNQS (that gives rise to a detection) should 
be reported as an upper bound for LC. 
 
It should also be noted that when LC calculated from Equation 2 is high relative to the 
value of LD determined from the FNQS concentration (e.g., LC could be greater than LD), 
setting LC = LD / 2 should be done with caution.  For example, if the calculated value of 
LC (Equation 2) is based upon a large number of values and LD is based upon one or two 
FNQS analyses performed within a short period of time, the FNQS analyses may not be a 
valid measure of LD.  Under these circumstances, FNQS data should be collected over a 
period of time before establishing LD (e.g., the period of time and analytical conditions 
should be comparable to that for the data collected to calculate LC). 
 
If the FNQS verifies LC, then the reporting limit for non-detects (i.e., LD) should be no 
less than the FNQS; that is, non-detects should be reported as “< Y,” were “Y” denotes 
the concentration of the FNQS.  However, it should be noted that when statistical 
evaluations of the data will be performed, any degree of data censoring is often 
undesirable.  It is recommended that all numerical results be reported with the values of 
LC and LD (e.g., a non-detect could be reported as “< Y [X],” where X denotes the 
measured value).  One FNQS should be analyzed periodically (e.g., one per analytical 
batch, initial calibration, or weekly, depending on the nature of the method) as an on-
going demonstration of LC.  Minimally, quarterly analyses are recommended. 
 
Optionally, as an additional check, analyze a FNQS per batch and calculate the recovery 
of the FNQS.  After 20 FNQS results have been collected, calculate upper and lower 
control limits for the recoveries.  Until 20 FNQS results have been collected, initial 
control limits of +/-50% are recommended.  (The RSD at two times the DL from 
Equation 3 is about 20% when n = 20 since t = 2.53 and 100/(2 x 2.53) = 20%; if limits 
are set at 2-sigma, then 2 x 20% = 40%.)  Note any FNQS results outside of control 
limits.  If an excessive number of FNQS results are out side of control limits (e.g., more 
than 10%), the Type I DL may have increased since the initial determination and should 
be recalculated.  LC has significantly increased (and should be revised) if the new value 
of LC is greater than two times the original. 
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Statistical tests that compare the degree of dispersion (precision) between two or more 
data sets could be used to monitor significant changes in LC.  For example, Levene’s test 
could be used to compare the variance of a data set used to calculate an initial value for 
LC to the variance of a data set used to calculate a revised value for LC.  Levene’s test is 
similar to Bartlett’s test (F-test) for the homogeneity of variances, but is more robust to 
departures from normality (e.g., since it evaluates dispersion about the median rather than 
the mean) 6.  Like the Bartlett’s test, if the test statistic exceeds a specified critical value, 
the “baseline” assumption (null hypothesis) that the variances of the two data sets are 
equal is rejected.  If Levene’s test were to indicate the variances are significantly 
different (e.g., the 95% or 99% level of confidence), one would conclude that a 
significant change in LC has occurred.  A new LC value would be calculated (e.g., using 
Equation 2) and verified using a FNQS as discussed above.  Note that, regardless of 
whether a statistical test is used to monitor changes in LC, the use of a FNQS to verify LC 
is essential (e.g., since this takes changes in analytical sensitivity due to bias into 
account; good precision but extreme negative bias would result in a failure to detect the 
analyte in the FNQS). 
 
For analytical methods characterized by low-level blank contamination that cannot be 
completely eliminated, LC is defined as the concentration that is statistically different 
from a method blank at the 99% level of confidence.  Method blanks are used to calculate 
LC when the mean blank concentration is significantly different from zero.  At least seven 
method blanks (not spiked with any analytes) are analyzed.  For n replicates, the Type I 
DL would be the 99% or 95% upper tolerance limit (γ = 0.99 or 0.95) for 99% coverage 
(p = 0.99): 
 

sKxL npC ,,γ+=         (4) 

The quantity x  denotes the mean concentration for the method blank.  (Note, once again, 
normality is being assumed).  The value of K can be obtained from tables (for the 
noncentral t distribution).  Note that if the population mean is known and equal to zero, 
the above equation reduces to Equation (2).  The value K in Equation 4 can also be 
estimated using the formula 7: 
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Note that when calculating LC (especially using blanks), it is acceptable for some results 
to be negative values.  A simple conservative approach for establishing LD would consist 
of multiplying the value of LC calculated using Equation 4 by a factor of two.  
Alternatively, LD could be established via the analysis of a FNQS as discussed above 
(spikes at LD would be required to give rise to a measured value greater than LC). 
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Discussion: 
 
The proposed approach possesses a number of advantages over the 40 CFR Part 136 
MDL procedure.  The approach gives rise to a Type I DL that is more protective of false 
positives than the 40 CFR Part 136 MDL procedure since it more effectively takes long-
term analytical variability into account and is based upon the tolerance interval for an 
unspecified number of future observations rather than prediction interval for the next 
single future observation.  Furthermore, unlike the MDL, the approach addresses false 
negatives.  The FNQS establishes the Type II DL, the lowest reporting limit for non-
detections, and provides an empirical verification of the Type I DL.  Unlike the MDL 
procedure, the Type I DL is determined during method development only and is verified 
periodically via the analysis of a FNQS.  Control charts can also be optionally generated 
for the FNQS recoveries to more effectively monitor method performance (e.g., to 
identify possible changes in method sensitivity). 
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A Statistical Methodology for Estimating Background Concentrations 
 

Basil Coutant, Battelle 
 

A common problem in environmental monitoring is establishing the mean 
background concentration of a pollutant at a site that is affected by local 
sources.  These background estimates may be subtracted off to establish the local 
contribution or they may be the basis for target concentrations of future pollutant 
levels.  Traditionally the background concentrations have been estimated by 
isolating sampling periods when it is felt that local sources do not affect the site 
or by pairing the site with another site that is assumed to measure only the 
background concentration for the primary site of interest.  There are problems 
with both of these approaches.  This paper presents a statistical methodology for 
estimating background concentration that utilizes all (or most of) the data 
collected at the site.  The modeling is based on maximum likelihood estimation 
with a distribution derived by modifying a gamma distribution.  The 
modifications to the Gamma distribution address detection limit issues and can 
be used to estimate background levels near or below the detection limit.  The 
method is demonstrated with benzene data collected in the Portland, Oregon, 
area and is comparable to more traditional estimates of background 
concentration. 

 
 
Introduction 
 
The goal for this project was to estimate annual (or typical) background concentrations 
for ambient concentration measurements.  By definition, the approach should not seek to 
identify what occurs during exceptional events.  Rather, the desired approach needs to 
identify the typical background for a site.  With this perspective in mind, approaches that 
rely on severely restricting the monitoring data to a small subset of observations 
corresponding to certain events (e.g., days with persistent winds, sharp frontal passages, 
or the right wind trajectory) should be rejected.  Instead it should be acknowledged that 
evidence of background concentration levels is likely contained within all measurements, 
and this information should be exploited to estimate the background. 
 
To do so this paper1 represents monitoring data by a statistical model developed in 
several stages.  The basis for the statistical model used is a gamma distribution2, 
described mathematically by its probability density function (pdf). 
 
In general, an ordinary gamma distribution has support on the real interval [0, ∞).  That 
is, it applies to variables with a non-negative range of values.  The gamma distribution is 
defined by two parameters, a shape parameter α and a scale parameter β.  The specific 
values of the parameters α and β impact the appearance of the gamma pdf, and variations 

                                                 
1  Battelle’s work was partially supported under EPA Contract No. 68-D-02-061. 
2  The log-normal distribution was also considered, but did not fit the test cases as well.  This may be due 

to a numerical stability issue for a shifted log-normal distribution that is not shared with the shifted 
gamma distribution. 
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of these parameters provide for a very flexible family of data-modeling distributions.  A 
shifted gamma distribution introduces a third parameter, call it µ, which changes the 
support of the distribution from that of the ordinary gamma, i.e., from [0, ∞) to [µ, ∞).  
The basic shape of the gamma pdf is left unchanged by such a shift.  In the current 
context, µ is assumed to be non-negative; however, this constraint is not required in 
general. 
 
To illustrate the model development and support its logic, consider the benzene 
concentrations observed at five monitoring sites in Portland, Oregon, from July 1999 
through July 2000.  Figure 1 summarizes the data via overlaid, site-specific time series 
plots.  While there are high and low concentration periods, there is no obvious seasonal 
trend in the Portland data.  Notice that there is a distinct lack of data below 0.3 µg/m3, 
about half of the data are between 0.3 and 2 µg/m3, and the remainder of the data are 
spread out progressively thinner from 2 to 9 µg/m3.  Upon first glance, this behavior 
would appear consistent with a conceptual viewpoint and statistical approach of a 
constant background and a distribution of source-oriented additions to that background. 
 
Figure 2 presents a quantile-quantile (Q-Q) plot of a gamma distribution fit to the 
benzene data at the Downtown site.  In general, Q-Q plots demonstrate the fit, or lack 
thereof, of a proposed statistical distribution to the empirical behavior of a given set of 
data.  Straight lines in such plots are indicative of a good fit.  Figure 2 supports the 
assertion that the shifted gamma pdf is, in fact, a reasonable choice for the statistical 
distribution.  It also shows that the data (all the data) contain a positive shift, or 
background.  All of the data for this site are shifted up approximately 0.75 µg/m3 from a 
line through the origin.  This positive shift is the background in the proposed model.  (See 
Table 1 also.) 
 
The parameters were fit to the distributional model using the method of maximum 
likelihood estimation.  A detailed description of maximum likelihood estimation may be 
found in Ref. [1].  The method is based on the probabilistic structure of the model.  The 
parameters are fit (estimated) through an iterative procedure using the NLMIXED 
procedure in the SAS software system that optimizes an object function.  The object 
function, called a likelihood, is a mathematical description of the probabilistic structure 
of the data. 
 
The likelihood has the same formula as the data’s assumed probability density, but with a 
different interpretation.  As a pdf, the parameters that are to be estimated are treated as 
fixed constants and the data treated as random variables.  In that setting, the formula 
describes the probability of observing data in any given range.  As a likelihood, the data 
are treated as fixed constants (i.e., the actual data observed via monitoring are fixed and 
known once observed) and the parameters are treated as variables.  The maximum 
likelihood estimates are the ones that maximize the likelihood, and essentially represent 
the parameter values that would assign the highest probability to the observed monitoring 
outcome. 
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Notice in Figure 2 that the “straight line” behavior of the Q-Q curve breaks down slightly 
near the intercept.  Since the goal is to capture the mean long-term vertical shift rather 
than the minimum shift, the model was modified from a shifted gamma, to a model that 
treats values near and below the mean shift different from the remainder of the data.  The 
data near [within 2 times the minimum detection limit (MDL)] or below the shift are 
treated as random noise.  The adjustment introduced to make this modification has 
several advantages.  First, the model will naturally handle below MDL data without 
additional modifications.  Second, the model is continuous and always supported on 
[0, ∞).  This results in a model that satisfies regularity conditions [1] so that the standard 
errors can be estimated via large sample theory. 
 
 
 

 
 

Figure 1.  Benzene Monitoring (µg/m3) from Five Portland, Oregon, Monitoring 
Stations Operating from July 1999 through July 2000. 
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Figure 2.  A Quantile-Quantile Plot of a Gamma Distribution Fit to Benzene Data 

from the Downtown Site in Portland, Oregon (July 1999-July 2000). 
 
 
 
The development of the model starts with the shifted gamma distribution.  The form of 
such a model and likelihood/distribution may be written as follows: 
 
    L(µ, α, β) = “shifted gamma” (i.e., yi = µ + εi ) ,  (Model 1) 
 
where yi represents the ith individual concentration; µ represents the true unknown 
background concentration level; and εi represents short-term, source-oriented “shocks” 
that produce positive deviations from the long-term background.  The εi’s are assumed to 
behave according to an ordinary gamma distribution with parameters α and β, implying 
the yi’s have a shifted gamma distribution. 
 
The first modification to the above model is motivated by measurement issues and 
numerical issues with fitting the data.  Frequently, MDLs are defined in terms of a 
measurement.  For modeling purposes here, such a point of view is adopted.  Data within 
a threshold of background plus two times the reported MDL (µ+2*MDL) were treated as 
random noise, or at least too imprecise to use individually for estimating the parameters 
of the assumed shifted gamma distribution.  The MDL for the Portland data shown in 
Figure 1 is 0.1 µg/m3, so the target for the threshold is about 0.95µg/m3.  In effect, all 
such data are censored and treated simply as an indicator of “below a threshold.”  
Although non-numerical in nature, such censored data are still used in the statistical 



 
 105

modeling process by making the proportion of the data below the threshold consistent 
with the data above the threshold. 
 
Now, the data are treated in a dichotomous fashion depending on the relationship to the 
censoring threshold.  Specifically, Model (1) is first modified as follows: 
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where yi and µ are defined to be the same as in Model (1). 
 
The decision to censor data up to a threshold of (µ+2*MDL) eliminated the problem of 
needing to know if the censoring threshold was larger or smaller than the background 
before fitting the models.  By using (µ+2*MDL), the censoring threshold is always 
greater than the background. 
 
While the above model can be fit numerically, the dichotomous treatment of the data 
results in a discontinuity in the likelihood.  This discontinuity at (µ+2*MDL) can cause a 
numerical instability in the estimate of the standard error of the background parameter.  
Hence, a further modification to the likelihood was introduced.  The modification 
introduced was to connect the two portions of the likelihood with a positive, 
finitely-sloped line over a short range; namely, a range of 1 MDL.  This ensures that the 
object function used in the parameter estimation is continuous and generally ensures that 
the uncertainty is estimable3. 
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Mathematical Details 
 
There are two mathematical details that need to be explored.  First, what does forcing the 
likelihood to be continuous really gain, and second, how is the constant found? 
 
Forcing the likelihood to be continuous causes the likelihood to satisfy a regularity 
condition, namely that one can differentiate under the integral.  To see why this works, 
consider a hypothetical case where f is a continuous pdf with the form: 
                                                 
3  For the sake of theory, one should replace Model 3 with a model that is exactly the same except that the 

two ends of the linear part are replaced with cubic splines so that the likelihood has a continuous first 
derivative on (0, ∞).  In theory this can be done very easily and in such a way that the new model is the 
same as Model 3 to within the precision of a computer.  This final model yields exactly the same 
estimates as Model 3 and satisfies the full regularity conditions.  Hence, the maximum likelihood 
standard errors given by SAS for the Model 3 parameter estimates are consistent for large samples.  
Clearly, there is no point in working with the more complex model in practice. 
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since the continuity of f means that g(r(γ),γ) = h(r(γ),γ).  Model 3 takes advantage of this 
by “jumping” from the constant to the shifted gamma over a range with a fixed length of 
1 MDL. 
 
The final step is to derive the mathematical form of the likelihood function.  The form for 
the shifted gamma is the same as an ordinary gamma evaluated at (x - µ).  The other two 
parts must be derived.  The conditions required are (1) the total area under the curve must 
be one and (2) the function should be continuous at the two break points.  Using the 
continuity conditions, the first condition becomes: 
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where k is the value of the constant, y is the value of the shifted gamma pdf at 
(µ+2*MDL) or the standard gamma pdf at 2MDL, and the CDF(2MDL) is the value of 
the standard Gamma CDF at 2MDL.  Solving for k yields: 
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The CDF of the gamma function is available within SAS (and NLMIXED in particular).  
So the whole likelihood can be written in SAS.  Note that for α > 1, the gamma pdf is 
concave down near 0.  This condition ensures that k > 0. 
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Results 
 
The results for fitting the model to the Portland Benzene data are shown in Table 1.  The 
results are in excellent agreement with the intuition from the data and are comparable to 
the 1996 NATA background estimate of 0.48 µg/m3.  Note that the Beaverton site is 
located in an adjacent, more rural county and is separated from the other sites by a low 
ridge of hills. 
 
 

Table 1.  Numerical Summary of July 1999 through July 2000 Portland, Oregon, 
Benzene Monitoring Data (µg/m3) and Background Modeling Results 

 

Site Sample 
Size Mean 

Standard 
Deviation Max Min Background 

Estimate 
Standard 

Error 

Beaverton 56 1.3840 0.6948 3.5127 0.3832 0.4067 0.2034 
Downtown 60 1.8953 0.8908 5.1094 0.5429 0.5491 0.0593 

NW_Post Office 59 1.9204 0.8738 4.4707 0.1000 0.7359 0.0563 
N_Roselawn 52 2.0972 1.2321 7.6641 0.6067 0.7127 0.0644 
SE_Lafayette 55 2.4844 1.5601 8.9415 0.6387 0.7364 0.0784 

All Sites 282 1.9511 1.1342 8.9415 0.1000 0.6282 0.0483 
 
Reference 
 
Cassella, G., and Berger, R. L. (1990). Statistical Inference, Duxbury Press, 
Belmont, California. 
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Overdispersion Models for the Violation of 
Nitrate Concentration Limits 

 
Nagaraj K. Neerchal, Deparment of Mathematic and Statistics, UMBC 

Earl A. Greene, United States Geological Survey 
Minglei Liu, Department of Mathematics and Statistics, UMBC 

 

 Abstract: 
The objective of this paper is to investigate possible approaches for the spatial 
analysis of the number of violations when the nitrate concentration exceeded 
beyond the regulatory limits.  The study will follow up on an ordinary logistic 
regression analysis where the probability that the nitrate level exceeds a given 
level is related to the explanatory variables such as land use pattern within a 
radius of the well and the its geology type. We consider a spatial analysis where 
the basic unit of analysis is a watershed. We study distributional properties of the 
number of `hot’ [defined as a well that exceeds the regulatory nitrate limit] wells 
in a watershed. It is noted that the usual binomial model is not an appropriate 
model here because of the spatial correlation. An appropriate analysis of this 
data using PROC GENMOD of SAS will be illustrated. Estimation of the logistic 
regression analysis under the Beta-Binomial model and a finite mixture of 
binomials model, which give a full likelihood approach to model such data, will 
also be discussed.  
 

Extended Abstract 
In a previous work on the analysis of nitrate concentration data, Kelley(2001) considered 
data from individual wells at a number of threshold levels. In this report, we analyze data 
combined at the watershed levels. To facilitate presentation of the method, we will only 
consider the threshold 3mg/l. The analysis will apply for any threshold level. We 
consider the following logit model for the probability of a well exceeding 3mg/l: 
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threshold 3mg/l in nitrate concentration and the rx1 vector ix   consists of predictor variables and 
β denotes the vector of corresponding regression coefficients. If we assume that the wells-level 
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 is distributed as a binomial random variables. The 

maximum likelihood estimates of such a model may be obtained using PROC LOGISTIC. 
Results from this run are given in the attached SAS printout. In the logistic model, Atmospheric 
deposition (HUC_ATDEP), Depth of bedrock (ROCDEP), Water table depth (WTDEP) come out 
to be significant.  
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The key assumption of independence of wells-level data is at best a working assumption. Nitrate 
concentrations in the wells located in the same watershed are expected to be correlated. 
Therefore, the number of hot wells (denoted by, say, T) in a watershed cannot be modeled as a 
binomial random variable. When the wells are positively correlated, the variability in T is 
expected to be higher than a binomial random variable. This phenomenon is known as 
`overdispersion’ (or Extra Variation) and has been an active research area for a number of years. 
A number of models are available to model such data. These include Beta-binomial model and a 
finite mixture of binomial distributions. See Morel and Neerchal(2000), for a review.  Neerchal 
and Morel (1998) propose a goodness of fit test for testing the adequacy of overdispersion models 
for real data. The test may be used to choose an appropriate model from several choices.  
 
Generalized Estimating Equations (GEE) is a method of estimation, which relies on the structure 
moments, rather than the exact specification of the distribution of the data. Overdispersed 
binomial counts have a particular moment structure. Therefore one may use the GEE 
methodology to estimate the parameters of an overdispersion model. GEE estimation can be 
carried out is a SAS procedure called PROC GENMOD. One would then obtain appropriate 
estimates and estimated standard errors, which respect the spatial correlations in the data. The 
GEE method of estimating a logistic regression model for the nitrate concentration data is 
outlined below. We illustrate that certain dependence structure can be incorporated into the 
logistic model given by (1) and an improved analysis can be obtained using PROC GENMOD 
and Generalized Estimating Equations (GEE). Under the GEE, in addition to the mean structure 
given by (1), we assume that the variance covariance matrix of the vector of observations 

,)',.....,( 1 jjmjj TTT =  is given by  
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is the logistic mean function given by (1). The asymptotic variance-covariance matrix of the GEE 

estimator is given by 
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This estimator of variance-covariance matrix of the parameter estimate is known in the literature 
as the ``sandwich estimator’’. It’s well known property that it gives the correct estimates the 
variance-covariance matrix consistently even when the hypothesized form of jV is incorrect, has 
resulted in its being called the `robust’ estimate. PROC GENMOD provides several options for 
the within-watershed covariance matrix Vj. Assumption of independent well-data corresponds to 
taking Vj  to be a diagonal matrix. The option in GENMOD called `EXCHANGEABLE’ assumes 
that the off-diagonal elements of Vj are all equal.  
 
Full likelihood based approaches such as Beta-binomial and the finite mixture of binomials 
mentioned earlier are not available as options in GENMOD. However, the classical method of 
computing maximum likelihood estimates, namely the Fisher scoring algorithm, can be 
implemented as shown by Morel and Neerchal (1993). Goodness-of-fit statistics for determining 
if a specific model is appropriate for the given data set are discussed in Neerchal and Morel 
(1998). If a model were applicable and interpretable, it would be beneficial to use the model for 
estimation, because of the gain in efficiency.   
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Measuring Pesticides, Lead, Allergens, and other Dangers in Homes 
 
 

John Rogers, David A. Marker, and Pam Broene, Westat 
Peter J. Ashley, Warren Friedman, John H. Miller II, HUD 

 
 

The U.S. Department of Housing and Urban Development (HUD) is conducting the 
American Healthy Homes Survey (AHHS) in 2004-5, with additional support from other 
agencies, including EPA.  This national study will collect information on allergens, 
chromated copper arsenate (CCA) treated wood, carbon monoxide, formaldehyde, lead, 
mold, nicotine, perfluorooctanoic acid (PFOA), pesticides  and child safety hazards in 
homes.  Samples will be collected from paint, dust (by wiping and by vacuuming), soil, 
and air; supplemental information will be obtained through questionnaires and 
observations by trained interviewers/technicians.  This presentation will provide details 
on the statistical design and sampling protocols for this study.  Some of these several 
materials being analyzed (analytes) were also measured in the National Survey of Lead 
and Allergens in Homes (sponsored by HUD and NIEHS) in 1999-2000 and the First 
National Environmental Health Survey of Child Care Centers (HUD, EPA and CPSC) in 
2001.  AHHS will provide an opportunity to see how exposure to these analytes has 
changed over time. The data on several of these analytes will provide the first national 
and regional estimates of their prevalences in homes across the United States.  We will 
also collect demographic and behavioral information that can be used to estimate 
exposures for children, the poor, and other populations of interest. 

 
 
Overview: The U.S. Department of Housing and Urban Development’s Office of Healthy 
Homes and Lead Hazard Control (OHHLHC/HUD) and the U.S. Environmental Protection 
Agency’s Office of Research and Development (EPA/ORD), conduct research designed to 
identify, characterize, and reduce human exposures and risks to key hazardous environmental 
contaminants commonly found in and around the nation’s residences.  
 
HUD, working with other agencies, has conducted national surveys generating data to 
characterize potential exposures, risks, and other key hazards for the U.S. population. In 1989-
1990, HUD, working with EPA’s Office of Pollution Prevention and Toxics (OPPT), sponsored 
a national survey of lead-based paint (LBP) in housing. The primary objective of that survey was 
to estimate the prevalence of LBP in housing. In 1997-2000, HUD and National Institute of 
Environmental Health Sciences (NIEHS) conducted the National Survey of Lead and Allergens 
in Housing (NLSAH) and produced estimates for the levels and patterns of lead hazards in 
United States. In 2001-2002, HUD, EPA, and the Consumer Product Safety Commission (CPSC) 
surveyed randomly selected child care centers across the United States to characterize children’s 
potential exposures to lead, allergens, and pesticides.  
 
HUD and EPA (both ORD and OPPT) are now planning for a new national survey of lead 
hazards, allergens, pesticides, and other important environmental and safety hazards found in and 
around the nation’s residential housing. This new survey, the American Healthy Homes Survey 
(AHHS), will assess potential residential exposures for the general population, to these key 
hazards. The data collected in this study will be used to develop new distributions of exposure 
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and risk, and to examine changes in the occurrence and magnitude of these exposures and risks 
over time, where baseline data is available.   For the AHHS, as for the previous surveys, HUD is 
obtaining Office of Management and Budget approval of the information collection request, 
including the survey methodology and statistical design.  The survey procedures will also be 
approved by the cognizant Institutional Review Board. 
 
This paper describes the planned statistical design and sampling protocols for this study.   
 
Population of Interest:  The estimates described above will be generated for the roughly 106 
million non-seasonal occupied housing units in the United States, with the following exceptions: 

• Housing where children are not permitted to live. 
• Group housing, both institutional and non-institutional.  
• Vacant housing.  
• Short-term housing.  
• Hotels and motels.  

 
The following subsets of the homes have sometimes been excluded from prior studies. However, 
they will be included in the AHHS: 

• Housing built after 1977; 
• Housing units in multi-family buildings; and 
• Manufactured housing units, i.e., mobile homes and trailers. 

 
Survey Design: HUD presently plans to sample 1600 housing units selected in three sampling 
stages, as described below.   
 
First-Stage: Sampling PSUs:  Every area in the 50 states and District of Columbia will be 
assigned to one of approximately 2000 primary sampling units (PSUs, or groups of counties).  A 
stratified sample of 75 to 100 PSUs will be selected with probability proportional to PSU 
population.  
 
Second Stage: Sampling Segments: Within each selected PSU, a frame of segments will be 
created from Census block files, where a segment consists of one or more geographically close 
blocks with less than 300 housing units. A sample of approximately 8 segments will be randomly 
selected in each PSU. 
 
Third-Stage: Listing and Selecting Housing Units: In each sampled segment all the eligible 
housing units will be listed to create a sampling frame. At the third stage of sampling, an equal 
probability sample of four housing units will be drawn from each list using systematic sampling.  
 
On the assumption that 50% of the selected housing units are both eligible for the survey and 
agree to participate, the number of responding household is expected to be about 1,600.  
 
Recruitment: Each household in the sample will be sent an initial contact letter introducing the 
study and explaining the importance and advantages of participation (including an incentive 
payment). Interviewers will then visit each home to contact the residents, determine eligibility 
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and request participation. For those homes that agree to participate in the study, the interviewer 
will schedule an appointment for data collection, by the same interviewer joined by a technician. 
Field Data Collection: The Interviewer will be responsible for introducing the team to the 
occupants, obtaining informed consent, explaining the tasks involved, conducting the room 
inventory, and administering the Resident Questionnaire. The Technician will be responsible for 
all X-ray fluorescence (XRF) analyzer lead-in-paint measurements and collection of lead dust 
wipe and lead soil samples. The technician will be a certified lead risk assessor in accordance 
with EPA regulations (40 CFR 745). All other data collection activities will be split between the 
two field team members in a manner that reduces the time spent in the home. The team is 
expected to spend no more than three and a half hours at each home, on average.  
 
Room Selection: After listing all rooms in the home, the interviewer will randomly select one 
room from each of the following four room strata: 

• Kitchen. 
• Common living area (living room, den, or family room) 
• Bedroom - If one or more children age 17 and younger reside in the home, one bedroom 

will be randomly selected from among the bedrooms in which the children sleep. If no 
such children reside in the home, one bedroom will be selected randomly from all the 
regularly occupied bedrooms (i.e., not a guest bedroom) in the home.  

• Other room – Rooms not in the three strata defined above. 
 
The environmental measurements and samples will be collected in the selected rooms and from 
the building exterior.  The interviewer will conduct a walkthrough survey involving questions 
and observations of safety features related to falls and burns in the home, including posted 
emergency numbers, fire extinguishers, smoke alarms, antiskid features of floor coverings, safety 
gates, and grab bars in bathrooms. Several tests are done during this walkthrough, including 
testing of smoke alarms and measurement of hot water temperature of a tub. During the 
walkthrough the interviewer will also collect the respondent’s vacuum cleaner bag. 
 
Lead Paint Testing: Paint will be evaluated in a non-destructive manner by XRF to determine if 
lead-based paint is present in the rooms sampled. The technician will test specific components in 
each of the four randomly selected rooms, and the exterior of the housing unit.  
 
Dust Sample Collection for Lead: Because applicable standards exist only for lead dust 
sampling by the wipe method and because wipe samples correlate well with blood leads (HUD, 
1995a), dust samples will be collected on window sills and floors with and without carpeting 
using dust wipes in accordance with HUD guidelines. One square foot templates will be used for 
floor samples. The entire interior sill area will be wiped for window sill samples. The wipe 
samples will be sent to an EPA-recognized lab for lead analysis. 
 
Soil Collection for Lead: Within each location, samples will be collected from bare soil, i.e., not 
covered with grass, concrete, asphalt, or other permanent covering, if possible. If no soil is bare, 
soil samples will be collected from covered surfaces, if possible. Thus, soil samples may be 
collected from soil covered by grass or mulch, but not concrete or asphalt. Soil sampling will be 
conducted in accordance with core sampling procedures described in the HUD’s Guidelines for 
the Evaluation and Control of Lead-Based Paint Hazards in Housing.  Only the top one-half 



 
151

inch of each soil core, i.e., that portion most accessible, will be included in the sample. The wipe 
samples will be sent to an EPA-recognized lab for lead analysis. 
 
Dust Sample Collection for Allergens: The dust sampling method proposed for allergens is a 
vacuum (fitted with a fine nylon mesh tubular fabric sampler inserted in the vacuum hose wand). 
HUD plans to analyze the dust samples for endotoxin and dust mite, cockroach, cat, dog, and 
mouse allergens using enzyme-linked immunosorbent (ELISA) assays. 
 
Dust Sample Collection for Mold: The proposed dust sampling method for mold is a vacuum 
(fitted with a fine nylon mesh tubular fabric sampler inserted in the vacuum hose wand). The 
perimeter of the rooms (and if necessary underneath the furniture) will be vacuumed for floor 
dust samples. The mold dust samples are intended to be analyzed for fungal species found in 
water damaged environments using PCR analysis and a patented EPA DNA extraction method.   
 
Building Moisture: Building moisture measurements will be taken using a digital, pinless 
moisture meter. When placed against a surface, these instruments provide a reading that is 
proportional to the moisture content of the surface. Measurements are to be taken at three 
distances from the floor; 3 inches, 3 feet, and 6 feet.  
 
Surface Wipe Sampling for Pesticides: Pesticide residues will be measured by collecting 
surface floor wipes (using EPA’s Analytical Protocol (AP) for the Collection of Surface Wipe 
Samples (i.e., Tabletops, Flooring (Hard Flooring, Carpeting)), HEAB-AP-20.02.1-HUD, 
Revision 1, dated February 20, 2001) from two rooms where the respondent reports that 
pesticides have been applied in the last 12 months. If no pesticide application is reported, the 
randomly selected common living area and bedroom will be sampled. The one square foot 
samples will be collected from along the wall.  
 
Air Sampling for Formaldehyde: For the AHHS survey pilot study, a passive diffusion badge 
was used for formaldehyde sampling. However, EPA may select a different device to meet its 
sensitivity needs. If the badge is used, formaldehyde samples will be collected from the 
randomly selected common living area and bedroom. Badges will be hung in the rooms at the 
beginning of the visit and  remain until the end of the visit. The samples will be sent to a lab for 
analysis using High Performance Liquid Chromatography. 
 
Carbon Monoxide Emission Testing of Appliances: The specific procedures for measuring 
carbon monoxide emissions and the conditions under which the measurements are taken have yet 
to be determined.  In the pilot study for the survey, a direct reading instrument was used. 
 
Sampling for CCA  (Arsenic): The proposed sampling plan for CCA includes both a floor wipe 
sample inside the main entrance and a soil sample. CCA soil samples will be collected in 
accordance with EPA’s Draft Protocol for Sampling for Residues of Arsenic, Chromium, and 
Copper in substrates (soils/buffering materials) Beneath/Adjacent to Chromated Copper Arsenate 
Treated Playground Equipment, dated 9/18/01). The top one inch of soil will be collected from 
an area two inches from the wooden vertical support. The soil and wipe samples will be sent to a 
laboratory for arsenic analysis. 
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Vacuum bag/Dust Analyses: EPA will specify the requirements for analyses that may be 
conducted on the vacuum bag dust. These may include nicotine, perfluorooctanoic acid (PFOA), 
and bioavailable arsenic.   
 
Vermiculite Attic Insulation: The technicians will be trained to identify different types of attic 
insulation. These include vermiculite which may contain asbestos.  If the attic insulation is 
accessible, the technicians will record the type of insulation and take pictures of the insulation.  
To avoid asbestos hazards, the insulation will not be sampled or otherwise tested for asbestos.   
 
Quality Assurance/Quality Control: The principal source of quality assurance will be the 
utilization of well-planned, detailed and tested documented protocols for all aspects of data 
collection: listing, in-person interviews, field observation, measuring and recording physical 
data, collecting environmental samples, equipment and sample handling, and data management. 
Thorough study-specific training of experienced field staff will be critical to assurance of a 
quality product. Finally, ongoing communication between and among the various individuals 
responsible for each stage of the study will be rigorously maintained to assure quality.  
 
The quality control for field data will include: 

• Manual edit of data collection forms by field staff; 
• Review of data collection forms by the field supervisor; 
• Telephone verification of data collection for a random 10 percent of the households; 
• Random field audits; 
• Quality control samples and measurements 

 
Field quality control samples for lead measurements are shown in the following table.  Replicate 
lead measurements will not be collected in AHHS because the NSLAH survey has adequate data 
for assessing components of variance. Quality control samples and measurements for other 
analytes have yet to be determined. 
 

Table 1.  Quality Filed Control Measurements/Samples for Lead 
Purpose XRF Dust Wipe Soil 
Materials Screen 
 

NA 2 per lot of supplies 2 per lot of 
supplies 

Field Blank 
 

XRF calibration  check– 2 per 
HU (pre/post) 

Not Applicable NA 

Reference Sample 
 

XRF Calibration of SRM film – 
2 per HU (pre/post) 

Made from NIST 
reference soil – 30 
high 30 low per lab 

NIST soil 
30 high plus 
30 low per lab 

Sample Replicate 
 

XRF Calibration – 3 SRM 
measurements – 2/HU (pre/post) 

  

Notes: HU = Housing unit; SRM = NIST Standard Reference Material 
 
Quality Control for Data Management, Preparation and Analysis: All data requiring key 
entry will be re-typed 100 percent. Any discrepancies will be immediately resolved. The 
resultant data and test results will be submitted to computerized range and logic checks. All 
discrepancies and out-of-range values will be investigated and resolved.  



 
153

 
Compiling the survey data files from various sources requires multiple processing steps. The 
results of each processing step will be checked for accuracy. In addition, all data from 2 percent 
of homes will be printed and manually compared to the original data sources to check that the 
final data files accurately reflect the original data.  
 
Finally, the data files will be formatted to make the data structure and data values easy to 
understand. The data documentation will describe each file, each variable, and value in each 
variable as well as provide guidelines for using the data. 
 
Statistical Issues: To fully account for the complex survey design, it is necessary to apply 
sampling weights to each completed case. A given unit’s sampling weight is roughly the number 
of housing units nationwide represented by the study unit. The initial weights may be further 
adjusted to balance differences in nonresponse and noncoverage. The sample weights will be 
available for analysis and variance estimation.  
 
In some cases the precision or bias of statistical estimates depends on the variance components, 
for example, differences between rooms in a home or differences between surfaces in a room. 
The magnitude of the variance components can be assessed from replicate samples, such as 
samples from difference surfaces in the same room.  For some contaminants, replicate samples 
will be taken to estimate the variance components. 
 
Homes can be classified as having or not having any lead-based paint.  However, the estimated 
proportion of homes with LBP can be biased by a combination of 1) within surface variation and 
measurement variation, and 2) incomplete sampling of rooms.  For the NSLAH survey the bias 
was estimated based on the variance components.  Similar analyses may be necessary for the 
AHHS results.  
 
The precision of the survey estimates depends on the estimate under consideration and the 
subpopulation of interest.  The sample design and sample size is based on a combination of cost 
and precision considerations.  The approximate width of a 95 percent confidence interval for a 
percentage estimate for all homes is expected to be about +/- 3 percent, with correspondingly 
wider confidence intervals for smaller subpopulations.   
 
Concluding Remarks: The AHHS survey will provide valuable information about hazards in 
home environments.  An important objective of the survey is to provide data for comparisons 
across time.  Since comparable household data for lead hazards and allergens was collected in 
the NSLAH survey, changes across time can be estimated for these measures.  In addition, XRF 
paint measurements were collected in the 1990 survey of lead paint.  These measurements 
provide another point of comparison.  However, a different XRF instrument was used in that 
survey.   
 
The other analytes to be measured in the AHHS survey will provide a baseline against which 
future data collection efforts can be compared.  Rather than a survey of a local area or hotspot, 
the AHHS is a national survey.  The AHHS results can provide national estimates against which 
the results from local or hotspot studies can be compared. 
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Pesticide Epidemiology, Biomonitoring, and Risk Assessment: Four Case Examples 

Allen, RH* Christensen, CH* Conomos, MG ** and Blondell, J* 
 
*US EPA, 7509-C Office of Pesticide Programs, Health Effects Division 
**Office of Environmental Information, Environmental Analysis Division 
 
EPA Quality Meeting, April 15, 2004, Tampa Fla. 
 
Introduction 
 
The objectives are briefly to: (1) summarize four case examples of current pesticide 
epidemiology, biomonitoring, and risk assessment and challenges they raise, and to (2) highlight 
areas for the development of web-based education for staff risk assessors, outreach to 
stakeholders and the general public, plus training for public health professional. 
 
Methods 
 
The four case examples are part of ongoing analyses by the Office of Pesticide Programs, 
Chemistry and Exposure Branch, Epidemiology Group in support of legally mandated pesticide 
risk assessments. These assessments comply with the Federal Food Quality Protection Act 
(FQPA) of 1996, earlier requirements of the Federal Insecticide Fungicide, Rodenticide Act of 
1988, and guidance on risk assessment and technical papers on aggregate and cumulative 
exposure assessment. Data sources are:  
 (1) Pesticide poisoning incident reports from multiple sources,  
 (2) Pesticide epidemiology findings from the inter-agency Agricultural Health  
                 Study (AHS), 
 (3) Pesticide biomonitoring findings of the various National Health and Nutrition  
                 Examination Survey (NHANES) reports 
 (4) Pesticide epidemiology reports in the open scientific literature. 
 
The four case examples are being examined here as part of a larger  strategic planning effort to 
design better education, outreach and training in pesticide epidemiology. There is a need for 
clear and concise web-based information, in sync with other environmental information and 
analysis  
 
Results  
Example #1 Pesticide poisoning incident reports 
The general perception is that pesticide poisoning incident reports are nice to have, but “we do 
not regulate on them,” but this is a misperception. Initially, this was true when the only data 
available were sporadically published clinical case reports of adverse health effects from 
unexpected exposures or intentional suicides. Many of the adverse effects were transient or 
acute, rashes, eye irritation allergy, hypersensitivity, and respiratory effects. Currently, there are 
five main tracking sources of pesticide poisoning information, and US GAO has twice rated 
reporting as incomplete and seriously flawed. A training program has been created to train health 
care professionals in the recognition and management of Pesticide Poisonings, and EPA 
contracts for the periodic publication of a manual on the same topic, as a reference service for 
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health professionals. The first data source is the 2000 cases reported by industry to EPA under 
FIFRA 6 (a) 2 Incident Data System. The second data source is the 110,000 reports per year to 
Poison Control Centers, with an additional 27,500 cases reported to poison control centers and 
seen in health care facilities, including 25,700 cases that have poisoning related symptoms (84% 
minor, 15% moderate, and 1% major or fatal). The third data source is the 1200 reports per year 
to the California EPA equivalent. The fourth data source is the 500 State reports to the growing 
NIOSH SENSOR program. The fifth data source is the 900 reports per year to the National 
Pesticide Information Center, maintained by EPA under contract to Oregon State University.  
 
The two key information needs are education for prevention, including the training of health 
professionals, and improvements to surveillance tracking. In over a dozen instances, pesticide 
epidemiology information on poisoning incidents was used for risk recommendations. 
 
Example #2 Pesticide epidemiology findings from the inter-agency Agricultural Health 
Study (AHS) 
A number of recent publications from the inter-agency Agricultural Health Study (AHS) suggest 
where pesticides are not or are associated with chronic health effects, e.g., macular degeneration, 
prostate cancer, or lymphohematopoietic cancers. The details of these reports are beyond the 
scope of this report, and can be found at the agricultural health study web site listed in the Web 
Resources. The eye disease findings sparked follow-up field studies, since back sprayers of 
fungicides had elevated risk, as did those with vision impairment. For the prostate cancer 
findings, a project is now underway to examine the pesticidal inert ingredient, many of which are 
not biologically inert. Also, findings from the prostate cancer paper showing an excess risk of 2 
fold for use of 7 of 50 and 4 fold excess risk for those with a family history and ever/never use of 
the compounds are likely to prompt toxicological studies and studies of susceptibility genes 
tested in genetically engineered rodents. 
 
The information needs that emerged from the findings so far are: (1) non-specialists need a 
primer to understand the basic concepts of epidemiology before beginning to grapple with the 
question “What do the numbers mean?” A publication on pesticide epidemiology from Purdue 
University has been helpful. (2) There is need for additional guidance and web-based resources 
on the interpretation of pesticide epidemiology findings for regulatory purposes. This need is 
growing due to the rapid increase in quality and quantity of publicly available pesticide 
epidemiology information. (3) Cutting-edge science or gene-environmental interactions, 
toxicogenomics are needed based on the observation that men with a family history of prostate 
cancer have a doubling again of risk that double in association with 7 of 50 pesticides, and (4) 
Pesticidal inerts with potential cancer producing properties may need to be re-examined for 
“prevention opportunities.” 
 
Example #3 Pesticide biomonitoring findings of National Health and Nutrition 
Examination Survey (NHANES) 
The NHANES pesticide biomonitoring findings provide a rich new source of pesticide 
epidemiology information. Ongoing analyses are of two types: chemical specific assessments for 
inclusion in reregistration eligibility documents (RED) posted on the EPA web site, and methods 
development including risk model validation for multiple routes of exposure. Twelve specific 
analytes are available of NHANES III, and over 30 are available for NHANES ‘99-‘00, with two 
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years of additional data expected shortly from NHANES ‘01-‘02. Earlier pesticide measurements 
from the Hispanic HHANES of ‘82-‘84 are comparable for 6 analytes and these results are being 
evaluated for development of results indicators. 
 
The information needs that emerged from these assessments are: (1) better characterization of the 
role of creatinine correct for both adults and children, (2) a wider array of analytes, since many 
compounds are used widely but relatively few are part of regular biomonitoring, and (3) 
environmental statistical weighting issues for complex samples as challenge to communicate to 
diverse audiences of varying statistical literacy.  
 
Example #4 Pesticide epidemiology reports in the open scientific literature 
In the last year, a number of published pesticide epidemiology studies of different designs 
reached senior management from different sources and required explanations of “what do the 
numbers mean” which in turn requires an understanding of study design and population 
characteristics. There are a chain of disconnects. Ecological studies may suggest hypotheses that 
go without follow-up, case control studies are often too small or geographically limited, thus 
putting even greater reliance of the emerging data from well designed and executed, but rarer 
prospective studies with data over time, but largely lacking biomonitoring. At the same time, the 
National Academy of Science concurred on the controversial recommendation for allowing 
studies of intentionally dosed humans to be used in regulatory decisions, subject to some as yet 
unspecified, and difficult to specific human subjects protection testing guidelines. So, human 
data now has a double meaning, for an audience with very uneven depth of understanding in the 
basic concepts.  
The information needs from this situation are: (1) pesticide epidemiology education at all levels, 
(2) focused staff training in pesticide epidemiology, especially for risk assessor, and (3) web-
based training in basic pesticide epidemiology for diverse external audiences. Such efforts are 
underway this fiscal year. 
 
Conclusions 
Pesticide epidemiology, biomonitoring and risk assessment have many embedded statistical, 
information and communication challenges that need to be addressed if the information is to 
serve the rigors of regulatory decision making. 
 
Web Resources 
http://www.epa.gov/opppsps1/fqpa/ 
http://www.aapcc.org 
http://search.epa.gov/s97is.vts 
http://www.cdc.gov/nchs/nhanes.htm 
http://www.aghealth.org 
http://ehp.niehs.nih.gov/ 
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Modeling Hazard Waste Arrival and Single Server Incinerator 
In Fixed Time: Monte-Carlo Approach 

 
 
Nelson Andrews; Economics, Methods and Risk Assessment Division (EMRAD) of the Office 

of Solid Waste (OSW), U.S. EPA 
 
 

The modeling of the formation of possibly toxic clouds, as hazardous waste is burned, 
requires the examination of the rate at which hazardous waste arrives at the burn site 
and the rate at which the waste is processed and incinerated. From a statistical 
perspective, this becomes a stochastic process with a queue and a single server 
(incinerator with a finite capacity). To simplify the mathematics for the derivation of the 
model, I assume an arrival rate for a fixed unit of hazardous waste and assume that this 
is the same unit of hazardous waste that is processed and incinerated each time the 
incinerator is used for burning hazardous waste.   Other assumptions used are (1) the 
independence of the arrival times of hazardous waste and the lengths of time for 
incineration of hazardous waste upon arrival; (2) arrival times form a Poisson process 
and (3) the length of incineration times form a Poisson process. With these assumptions, 
it can be shown that this arrival/service process, where the state is the number of units of 
hazardous waste in the system waiting for service or being served, is a Markov process 
(has short term memory). This problem, even with the Markov process assumption, is not 
an easy problem to solve, but using a Monte-Carlo approach, we can use random number 
generators to simulate the behavior of such a queue and server for estimating the 
respective probabilities 

 
 
As I began researching various modeling efforts related to hazardous air pollutant emissions, it 
became apparent that there are as many models as there are different terrains in the environment. 
To maintain my sanity (and not wishing to turn a short term fact finding mission into a thesis), I 
quickly narrowed the field to the EPA Preferred models. I briefly mention several of these 
models to support the fact that source emission rate (Q) is a critical input factor for such models. 
This paper looks at the business related parameters of a plant (source) such as hazardous waste 
arrival rate and the material processing rate to achieve a source emission rate over a fixed time 
period. I assume that the incoming material is hazardous waste to justify the social and economic 
benefits to producing of a toxic plume. It is conceivable that the incoming material is not 
hazardous but merely converted during a production process or an Energy recovery process. 
 
Quick Look At EPA Preferred Models 
The preferred models that I mentioned earlier can be found on the EPA “modeling” web page 
http://www.epa.gov/scram001/tt22.htm . On this web page, there are six models described. Of 
these six models, four are appropriate for terrain stationary sources. The four models are: 

1) Buoyant Line and Point Source Model (BLP), 
2) Complex Terrain Dispersion Model Plus Algorithms for Unstable Situations 

(CTDMPLUS), 
3) Industrial Source Complex Model (ISC3), 
4) Offshore and Coastal Dispersion Model (OCD). 



 
 243

In each of these four models, a required input is the source emission rate for the hazardous air 
pollutant plumes being emitted from the stack(s). 
 
 
 
(BLP Model) 
The BLP dispersion model models the point source and the line source plume rise and physical 
distribution over a given terrain. The model uses hourly meteorological data such as wind speed, 
wind direction, ambient air temperature and mixing height to model the dispersive characteristics 
of the atmosphere. Restrictions for the model are a maximum of 50 point sources and a 
maximum of 10 line sources. Each line source is assumed to have equally spaced point sources 
with stack parameters such as height, width and base elevation are constant within each line. In 
general the model categorizes the model either as rural or urban. 
For the pollutant emission rate (g/s), whether it’s the point source emission rate (Q) or the line 
source emission rate (QL), the model assumes a single average emission value for the time under 
study. Since there is a maximum of 366 days for the meteorological input, I assume that the 
maximum time period that can be considered for this model is one year. For the point source 
input, the emission rate may vary from point source to point source. For the line source input, the 
emission rate may vary from line source to line source. But for the point sources within the line 
source, the emission rate is constant. 
 
(CTDMPLUS) 
As the name suggests the CTDMPLUS dispersion model is designed to address the complex 
terrains. The inputs for this model are similar to the previous models with the exception that a 
mathematical depiction of the shape of the terrain is required as input. When using this model the 
user first describes the terrain then provide the meteorological data and the emission source data. 
Unlike the previous model (BLP), this model deals only with point sources (no line sources). By 
default it can model up to 40 sources, but the user may change the maximum number of sources. 
 
The pollutant emission rates (mass per second – g/s) may be given in terms of an average value 
per source or the user has the flexibility to enter one emission rate per hour per source. The 
second choice gives the user more flexibility in describing the pollutant emission rates over time 
when both stable and unstable conditions are present. 
 
(OCD Model) 
The OCD dispersion model describes the onshore impact of offshore pollutant emission sources. 
This model uses hourly onshore and offshore meteorological data to model the behavior of 
plume rise and dispersion. Since offshore source stacks may not be at a zero degree angle from 
the vertical, this model introduces an additional parameter; the stack angle. In addition to using 
either point sources or line sources, this model makes provision for area sources. The area source 
is designated as a circular area with center located at the Cartesian point (x,y). 
 
The source input for this model is similar to the previous models. The pollutant emission rate (Q) 
for the source is in terms of mass per second.  The input may be constant for each source or it 
may be hourly emission data may. It is not clear to me how many point sources can be modeled 
and the maximum time period. I will leave this for future investigation. 
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(ISC3 Model) 
In the industrial complex environment, the ISC3 dispersion model includes the layout of the 
terrain grid to account for the dry deposition of the generated plume along its path. Like the 
previous models, it also divides input into meteorological and source parameter data. The terrain 
grid information is the third input component for this model. The surrounding terrain for this 
model is one of two choices; either rural or urban. 
 
The source input for this model requires at least a constant pollutant emission rate throughout the 
modeling period for each point source. Unlike the other models, this model only considers point 
sources (a maximum of 500). The point sources may be grouped into 2 to 50 groups. However, 
this model does handle a variety of types of sources. A source may be one of the following: Point 
(A single point source such as a stack), AREA (ground level releases such as lagoons or dumps), 
VOLUME (multiple levels such as buildings and vents) and OPENPIT (ie. Rock quarries). For 
each source, the emission may range from an hourly emission rate (for the short term model 
only) or a value that is constant over the modeling period. 
 
Emission Rates and Business Operation Parameters 
After this brief and painless overview of the ‘EPA Preferred’ Models, it is apparent that the point 
source emission rate is a required and necessary input value when implementing plume 
dispersion models. So, how is the average pollutant emission rate computed for a typical point 
source? In most instances, the emission rate for a source is measured for a specified length of 
time and the average value of the empirical measurements becomes the average emission rate for 
the source. This is good, when the business operating parameters will not change, but how 
realistic is such an assumption? 
 
So, let’s get to the business of relating the business operating parameters to the pollutant 
emission rate of a point source. The two business operating parameters that are relevant to the 
emission rate are (1) the delivery rate of the raw material and (2) the service rate of the raw 
material (In the case of Hazardous Waste Incinerators, this is the rate at which the raw material is 
processed and incinerated.).  To simplify the calculations that follow, let’s assume that the 
delivery occurrence is a poisson process with expected inter-arrival time of λ. For the service 
occurrence let’s assume a poisson process with expected processing time of µ. The final 
parameter that is required is the conversion factor between the raw material and the hazardous 
emission pollutant. We will call this factor ‘ρ’ and it relates the amount of raw material 
processed (X) to the amount (mass) of pollutant produced (Y) as follows:  Y = ρ(X). 
 
If the average amount of raw material processed  in the fixed time T is denoted as XT, then using 
the conversion factor we have the amount of pollutant produced in this time is YT = ρ(XT). Using 
the notation for average emission rate for the pollutant of interest, we denote the average 
emission rate over time T as QT. Dividing the amount of average amount of pollutant produced 
over time T, by the time T, we have the following formula for the average pollutant emission 
rate: 

   (1) QT = ρ(XT)/T. 
(Use the appropriate multipliers to convert the resultant number into g/s units.) Now we have a 
formula (1) that takes us from the raw material average processing rate to the average pollutant 
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emission rate. If we have no raw material to process, we have no pollutants being emitted. 
Therefore, the amount processed must be related to the amount of material arriving at the point 
source. How do we relate the arrival rate to the amount processed? The next section discusses 
this relationship while setting up a stochastic process to relate these parameters. 
 
Queuing Theory Approach for Plume Production 
Examining a basic unit (fixed amount per delivery) of raw material for delivery and incineration, 
we can treat the number of units remaining in the queue after an elapsed time T as a birth/death 
process. Making the assumptions discussed in previous section about the distributions of the 
arrival rate and the processing rate, we can simplify the mathematics required to determine the 
rate of processing each unit of raw material. But even with these simplifying assumptions, trying 
to build a mathematical expression becomes a significant challenge in algebraic manipulation. 
Hence, later we will use a Monte Carlo approach to estimate the probabilities of ‘KT’ remaining 
when we assume Poisson arrival process (Markov) and a Poisson service process (Markov). In 
this instance we will assume a single incinerator for each source (hence a single server). From 
queuing theory notation, we have the following shorthand notation M/M/1/4. The infinity 
symbol, ‘4’, indicates the queue size is significantly large enough to hold any number of units 
that arrive. 
 
As we use the properties of the M/M/1/4 queue to construct probability functions, we need to 
define some additional variables for this arrival/service process. We have already introduced 
‘KT‘, the remaining units in the queue. Now we build a list of all the pertinent variables for this 
queuing problem in the table below. 
 

Table 1: Stochastic Variables for analysis of Pollutant Emission Rate 
Stochastic 
Variable 

Description Comments 

KT Number of units of raw material remaining in 
queue after elapsed time ‘T’. 

(Assume queue 
empty at time 
zero.) 

NT Number of units of raw material processed during 
elapsed time ‘T’. 

 

AT Number of units of raw material processed during 
elapsed time ‘T’. 

AT = KT + NT 

CF Conversion factor for converting units of raw 
material to mass of raw material. 

XT = CF E(NT), 
The notation E( ) 
is used to represent 
expected value. 

t1, t2, …, tn Sequence of stochastic independent delivery 
arrival time intervals. (The Ith arrival will occur tI 
length of time after (I-1)th arrival.) 

 

s1, s2, …, sn Sequence of stochastic independent service times.  
 
Next we investigate the steady state behavior of this queuing model. The steady state refers to 
the stochastic behavior of the model as the total elapsed time approaches an infinite value. To 
derive the stochastic behavior (probability of being in a given state after a substantially large 
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elapsed time period), we construct the state model. The state model for the M/M/1/4 queue, 
when the state is the number of units remaining in system, is shown in Figure 1 below. 
 
  

 
 
The parameters µ and λ in Figure 1 refer to the expected service time and the expected delivery 
time respectively. Establishing the steady state equations for this model and solving the 
equations for the probability of being in state ‘k’, we get the following formula:  
Probability {State k} = (µ/λ)k (1 – µ/λ). 
In reality, this steady state time period happens after an extended elapsed period of time; but 
whether a source is consistent enough in their operations to reach steady state for given 
parameters is purely subjective. However, the steady state values provide a check for the 
accuracy or correctness of the results obtained through the Monte-Carlo approach. By projecting 
the results from the Monte-Carlo approach out to an infinite time period, we should get results 
that are close to the steady state probabilities. This method is shown in the next section. 
 
 
Monte-Carlo Approach 
The heart of the Monte-Carlo approach is a good Uniform(0,1) random number generator. But 
the random number generators on most Personal computers probably fall in the area of pseudo-
random number generators. For the precision of this modeling effort, such generators are 
adequate. The approach for this effort is the following: 
 

1. Use the random number generator to generate a random number between 0 and 1. Such 
numbers will be generated throughout this methodology and will be used to obtain a 
corresponding random variable associated with some distribution function of interest. Let 
‘p’ represent a random generated number between zero and one. If F(x) is a cumulative 
distribution function, then F-1(p) is a random variable with cumulative distribution 
function F(x). 

2. Given the fact that the arrival times form a Poisson process, the random number of 
arrivals in time ‘T’ is distributed according to a Poisson distribution with an expected 
value of T/λ. Using P(A ; T/λ ) to represent the cumulative probability of less than or 
equal to k arrivals in time ‘T’ with mean T/λ, we generate the random number of arrivals 
in time ‘T’ with the following: AT = P-1(p; T/λ). 

3. After generating the random number of arrivals (AT) in time T, we now derive the time 
of occurrence for the mth delivery. We begin this task by letting Tm represent the time of 
the mth delivery or Tm = t1 + ….. + tm. From the properties of the Poisson process, the 

Figure 1: State Diagram Model for M/M/1/4 
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λ λ λ 
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conditional probability of Tm being less than τ given that there are exactly AT arrivals in 
time T and the (m-1)th time of arrival is T(m-1) is computed to be 1 – [(T -τ)/(τ – T(m-1) 
)]A(T)-m+1; where A(T) = AT.  Equating this function to the uniform random variable ‘p’ 
for the distribution of each Tm, we can generate the random delivery times for all AT 
delivery times in elapsed time T. 

4. By definition of the service times forming a Poisson process, each random variable si (i = 
1, …., AT) is randomly distributed under an exponential distribution with expected value 
µ. Using this fact we generate each of the random service times for si by equating the 
cumulative distribution function for each service time to a random value ‘p’ and solve for 
the service time. 

5. The final step in the Monte-Carlo approach is to determine the number of units that 
complete service during elapsed time T. To derive this value, we construct a sequence Sk 
= max(Tk , S(k-1)) + sk. Then we search for the largest value ‘k’ such that Sk < T. This 
value gives us the stochastic variable KT for this particular run of the Monte-Carlo 
approach. 

6. Repeating steps 1 through 5 above a large number of times, we construct a frequency 
table and provide estimates for the probability of being in a given state after a fixed 
elapsed time ‘T’. 

 
From the frequency distribution table, generated through the Monte-Carlo approach, we are able 
to construct the expected number remaining in the system at elapsed time T. Using the 
relationship AT = KT + NT and the fact that the expected value of AT is T/λ we have the 
following formula for the expected number of units processed in time T: E(NT) = T/λ – E(KT).  
With this expected value of the number of units processed in time T, we are now able to compute 
the expected amount processed in time T as follows: XT = CF E(NT). Upon reaching this stage in 
the analysis, we can call it a day and say a job well done. But before, we quit I will give a few 
thoughts about the verification of the accuracy of this approach. 
 
In theory, when the steady state probabilities can be computed, the fixed time probabilities 
should approach the steady state probabilities as we evaluate the fixed time probabilities for 
larger values of T. To verify the accuracy of the Monte-Carlo approach, I fit the results for the 
Monte-Carlo probabilities to a geometric distribution and provide a parametric distribution 
function for the fixed time probabilities. For a fixed state, I extrapolate the value of the fixed 
state probability as T becomes large (It should be near the steady state value.).  Now we can call 
it a day. 
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Region 5 Changes In Estimated Hazard Exposure and Demographic 
Characteristics: 1990-2000

by
                                          Lawrence Lehrman and Arthur N. Lubin 

Introduction

There were several procedures used to show areas of migration of population and changes in
toxicity hazard estimates between 1990 and 2000.   The changes in hazard estimates between
1990 and 2000 were compared among levels of demographic attributes.  The demographic
characteristics were  population densities, proportions low income, proportions of resident
populations who are  members of minority population categories and numbers of new residences
built during the ten year period.    The estimated hazard exposure differentials among the
demographic characteristics indicate whether or not populations with different characteristics
also experienced different changes in estimated toxicity exposures.  Changes in hazard estimates
were compared with changes in population sizes.   This certainly has policy implications because
of the EPA’s Environmental Justice efforts designed to ensure environmental “fairness.”  
Furthermore, changes in hazard estimates were shown.  Finally, discriminant analysis was done
to estimate whether or not the population size change quartiles provided maximally
homogeneous areas in terms of selected demographics and the estimated 2000 hazard estimate.

Data-base Development

The initial stage of the effort involved the development of a data base which combined EPA
approved risk coefficient values, TRI data along and 1990 and 2000 U.S. Census block group
level information.  Sources of the data and coefficients were the EPA’s TRI data base,  the
Bureau of Census 1990 and 2000 and EPA’s Risk Screening Environmental Indicators (RSEI)
also from 1990 and 2000.

The RSEI was produced by the Economics, Exposure, and Technology Division Office of
Pollution Prevention and Toxics.   RSEI does not calculate detailed or quantitative risk
assessment  but offers a screening-level, risk-related perspective for relative comparisons
of chemical releases.    The risk-related score is a unitless value are  proportional to the potential
risk-related impact of each element.  Actual scores per TRI facility are derived by summing the
estimated risks from each element emitted.    Although the model results do not capture all
environmental releases of concern, they do relate changes in releases to relative changes in
chronic human health impacts from a large number of toxic chemicals of concern to the Agency. 
Our purpose for using RSEI was to compare relative risk levels over time and definitely should
not be viewed as an effort to predict actual risk levels.  

U.S. Census block-group level data were used to estimate the changes in population densities
over time (1990 - 2000).  The primary reason block-group level data were used is that it is the
smallest geographic area that incorporates sampled data.  We required sample data because our 
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analysis includes the census parameters of new homes ( built since the last census) , minority
populations and low income.

Cell grids are an ideal tool for analysis due to spatial uniformity (census blocks groups were
inconsistent in the 1990 versus 2000 censuses).  A uniform grid cell system is excellent for
incorporating data from polygon features with inconsistent boundaries.  It also produces a
continuous and uniform  product allowing us to complete boolean queries, algebraic functions,
and statistical analysis from one table.  We used a 3 X 3 km cell size to be consistent with the
resolution of block groups in the suburban areas experiencing growth. 

A surface allocation technique was used for the purpose of smoothing small spatial variations  in
the demographics data. Our technique involved having the demographics used to populate the
cell be representative of a larger area than the cells area.  Our 3 by 3 km grid cells represent  the
demographics of the centroid  buffered to 5k.   The buffered polygons are intersected with the
block-group Census polygons and the populations estimated.  The hazard allocation weights for
grid cells were calculated using much the same procedure as for the demographics data.   The
grid cell RSEI attribute consists of the sum of the hazards within the 5k buffer. A 5k buffer
provides for demographics and releases from facilities near the edge of the cell to be considered
as having an influence.

The Region 5 grid consists of  99,639 3 by 3 km grid cells.  The attributes are the 1990 and 2000
Census Demographics ( population density, new homes built since last census, and the
Environmental Justice parameters of minority, low income and poverty levels) and the 1990 and
2000 RSEI hazard densities.  Population and toxicity changes over time were calculated by
subtracting 1990 from 2000 results.  The population and hazard changes were quartiled and the
results were  mapped.  

Analysis and Results

An initial objective in this analysis is to determine areas of apparent increasing risk using the
RSEI Hazard numbers and comparing  them across demographic attributes.   An advantage of a
grid system is it makes querying an easy procedure.  The attributes in our grid table includes
Grid-id and 1990 and 2000 population and hazard densities.   Differences between the 1990 and
2000 population sizes and hazard estimates were calculated and quartiled. 

The statistical analysis involved obtaining averages for the  demographic change variables 
(2000 minus 1990 values) and the estimate of risk in 2000. This was done for all of the
approximately 100,000 squares aggregated as well as per demographic quartile (the quartiles of
population size 2000 minus population size 1990 were used as groupings).    The averages per
quartile of the risk estimates and the demographic variables are shown on Table 1.  

.The quartile means of the average hazard estimate indicate the expected pattern of persons
tending to migrate into are as with lower exposures.  It is interesting that the differences among
the quartiles in terms of most of the demographics do not seem substantial.
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Table 1

Average Level of Hazard Estimate and Demographic Change Variables (2000 minus 1990
values) Per Quartile of Population Change Variable (2000 minus 1990 population) 

Quartile of Population Change   Average Hazard   Average Change in Average Change In
                                                    Estimate               Population Density        Prop. Low Income.
Quartiles Aggregated                  184,440                12.60                              -2.97
1                                                  395,286                -8.47                               -2.60
2                                                  161,018                2.71                                -3.11
3                                                  109,520                13.28                              -3.25
4                                                  71,336                  43.06                              -2.93

Quartile of Population Change   Average Change     Average Prop. New 
                                                    In Prop. Minority.   Housing (post 1990)
Quartiles Aggregated                  3.52             2.50
1                                                  3.80                         1.41
2                                                  3.40                         2.01
3                                                  3.10                         2.87
4                                                  3.78                         3.71

The apparent  relationships between the population change quartiles and the hazard 2000
quartiles were further illustrated using the map queries in the legend for Figure 1.  .      

Figure 1

The areas which are not colored per the legend for
Figure 1 are residual areas where the population
growth and hazard growth estimates are in opposing
quartiles and/or- halves.  For instance, the area may be
in the upper quartile or half for the hazard change
estimate and in the lower quartile or half for
population growth.  Because a high proportion of the
Chicago PMSA is not colored per the legend,  Figure 1 
further suggests an
aversion to migrating into
areas with higher hazard
estimates.  

The Ever Changing and
Expanding Universe of
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TRI and RSEI should be considered when interpreting Figures  2 and 3 which follow.  The TRI
program has expanded significantly since its inception in 1987. The Agency has issued rules to
roughly double the number of chemicals included in the TRI and seven new industry sectors
have been added to expand coverage significantly beyond the original covered industries.  Most
recently, the Agency has reduced the reporting thresholds for certain persistent, bioaccumulative,
and toxic (PBT) chemicals .Overall in the Region 5 Urban areas there was a 17% percent
reduction in total estimated hazard from 1990 to 2000... 

Figure 2 is a map of much of Region 5 indicating areas with increasing or decreasing RSEI
numbers.   The results mapped in Figure 2 were obtained by quartiling the cell’s hazard exposure
estimates for 1990 and 2000 separately and subsequently subtracting the 1990 from the 2000
quartile for each cell.   Figures 3  shows similar results for the Chicago PMSA.   Positive results
from indicate areas where relative risk increased and negative results where relative risk
decreased. 

Figure 2                                       Figure 3

Another interest was whether or not the population change
quartiles provided relatively homogeneous areas in terms of the demographics and the estimated
2000 hazard toxicity exposure.  This was tested using discriminant analysis.  Discriminant
analysis uses the generalized squared distances (based upon the hazard and demographic values)
among the block groups to categorize the groups into categories while taking into account the
original categorization probabilities.  The pooled covariance matrix was used because the within
group covariance matrices were relatively equal.  Version 8.0 of the Statistical Analysis System
(SAS) Software was used to perform the statistical analyses.                    
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The results of the discriminant analysis categorizations  versus those for the original quartiles for
the entire Region provided a fairly high level of categorization agreement.  Approximately 65 per
cent of the cells’s categorizations were not altered by the statistical approach.  Exemplary results
with a similar level of categorization agreement are provided by the maps of the Detroit urban
area shown below.  Figure 4 shows the original quartile groupings and Figure 5 the discriminant
groupings.  In addition, it was relatively unusual for the discriminant analysis to yield
categorization changes which reallocated a cell to more than one grouping level different from the
original result.   This appears to suggest that the relatively simplistic quartile based grouping
approach is not necessarily woefully inadequate for creating at least somewhat homogeneous
categories.   The creation of relatively homogeneous areal groupings is potentially valuable for a
wide range of applications including developing more efficient sampling strategies and possibly
for the targeting of  area-wide environmental impacts mitigation efforts.

Figure 4 Figure 5

Summary and Results
The effort has provided several significant results.  First, the study found that in Region 5 the
areas with greater TRI related hazard estimates tend to have reduced population growth. 
However, the relationships between risk estimates and changes in demographic characteristics do
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not appear to be substantial.     Thus, the results do not seem be indicative of increasing  levels of
environmental inequity.  The  finding that higher risk estimates may be related to lower
population growth  was further verified by Figure 1 which demonstrated that there are substantial
areas within the Region where the risk is decreasing; especially those areas with reduced
population growth.  Second,the relative success of EPA’s hazard reductions programs is
suggested 
 by Figures 2 and 3 which demonstrated that a high proportion of the map cells had lower relative
risk estimates in 2000 versus 1990.  The maps probably understate the success of the program due
to several areas having artificially increased risk levels in 2000 versus 1990 at least partially due
to the expansion of the number of chemicals included in TRI, new industries being added to the
data base and reduced reporting thresholds for several chemicals.  Third, the discriminant analysis
demonstrated that the relatively simplistic approach of quartiling based on population growth
provides at least somewhat homogeneous groupings in terms of 2000 risk estimates and the
selected demographic characteristics.  
The present effort should be viewed as merely a work in progress.  There are several additional
areas where future efforts probably should be directed.  First, if the investigation focused on
additional areas (smaller or larger levels of scale), would the results be similar to the present
findings.  In other words, are the results geographically generalize able?   Second, the specific
characteristics which account for the relative consistency of groupings is uncertain.  This could be
determined via variance decomposition approaches.  Third, similar investigations should be done
to determine the findings which would be obtained if the analysis was done for a particular type
of pollutant and/or facility.  Fourth, the data base development and data analysis relied upon the
combination of several software packages and data bases.  Could similar procedures be done
using additional software packages and/or data bases to expand into a multimedia effort?  These
are only a few of the potential future efforts which could be undertaken.  Any suggestions of
potential future directions and/or methods to achieve them would be appreciated.
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